Skip to main content

Migrating RIP to IGRP

Migrating RIP to IGRP
7.3.6 This page will teach students how to convert a router from RIP to IGRP.


When Cisco created IGRP in the early 1980s, it was the first company to solve the problems associated with the use of RIP to route datagrams between interior routers. IGRP examines the bandwidth and delay of the networks between routers to determine the best path through an internetwork. IGRP converges faster than RIP. This prevents routing loops that are caused by disagreement over the next routing hop. Further, IGRP does not share the hop count limitation of RIP. As a result of this and other improvements over RIP, IGRP enabled many large, complex, topologically diverse internetworks to be deployed.

Use the following steps to convert from RIP to IGRP:

1. Enter show ip route to verify that RIP is the routing protocol on the routers to be converted.
2. Configure IGRP on Router A and Router B.
3. Enter show ip protocols on Router A and Router B.
4. Enter show ip route on Router A and Router B.

The Lab Activities will show students how to configure a default route, use RIP to propagate the information, and then convert the router to IGRP.

The next page will explain how to verify that IGRP has been configured properly

Comments

Popular posts from this blog

OSI layers / Peer-to-peer communications / TCP/IP model

OSI layers 2.3.4 This page discusses the seven layers of the OSI model. The OSI reference model is a framework that is used to understand how information travels throughout a network. The OSI reference model explains how packets travel through the various layers to another device on a network, even if the sender and destination have different types of network media. In the OSI reference model, there are seven numbered layers, each of which illustrates a particular network function. - Dividing the network into seven layers provides the following advantages: • It breaks network communication into smaller, more manageable parts. • It standardizes network components to allow multiple vendor development and support. • It allows different types of network hardware and software to communicate with each other. • It prevents changes in one layer from affecting other layers. • It divides network communication into smaller parts to make learning it easier to understand. In the foll...

Advantages and disadvantages of link-state routing

Advantages and disadvantages of link-state routing 2.1.5  This page lists the advantages and disadvantages of link-state routing protocols. The following are advantages of link-state routing protocols:  Link-state protocols use cost metrics to choose paths through the network. The cost metric reflects the capacity of the links on those paths. Link-state protocols use triggered updates and LSA floods to immediately report changes in the network topology to all routers in the network. This leads to fast convergence times. Each router has a complete and synchronized picture of the network. Therefore, it is very difficult for routing loops to occur. Routers use the latest information to make the best routing decisions. The link-state database sizes can be minimized with careful network design. This leads to smaller Dijkstra calculations and faster convergence. Every router, at the very least, maps the topology of it...

Ports for services

Ports for services 10.2.2  Services running on hosts must have a port number assigned to them so communication can occur. A remote host attempting to connect to a service expects that service to use specific transport layer protocols and ports. Some ports, which are defined in RFC 1700, are known as the well-known ports. These ports are reserved in both TCP and UDP.  These well-known ports define applications that run above the transport layer protocols. For example, a server that runs FTP will use ports 20 and 21 to forward TCP connections from clients to its FTP application. This allows the server to determine which service a client requests. TCP and UDP use port numbers to determine the correct service to which requests are forwarded. The next page will discuss ports in greater detail.