Skip to main content

Load balancing with RIP

Load balancing with RIP
7.2.8 This page will describe load balancing and explain how RIP uses this feature.


Load balancing is a concept that allows a router to take advantage of multiple best paths to a given destination. These paths are either statically defined by a network administrator or calculated by a dynamic routing protocol such as RIP.

RIP is capable of load balancing over as many as six equal-cost paths. The default is four paths. RIP performs what is referred to as “round robin” load balancing. This means that RIP takes turns forwarding packets over the parallel paths.

Figure shows an example of RIP routes with four equal cost paths. The router will start with an interface pointer to the interface connected to Router 1. Then the interface pointer cycles through the interfaces and routes in a deterministic fashion such as 1-2-3-4-1-2-3-4-1 and so on. Since the metric for RIP is hop count, the speed of the links is not considered. Therefore, the 56-Kbps path will be given the same preference as the 155-Mbps path.

The show ip route command can be used to find equal cost routes. For example, Figure is a display of the output show ip route to a particular subnet with multiple routes.

Notice there are two routing descriptor blocks. Each block is one route. There is also an asterisk (*) next to one of the block entries. This corresponds to the active route that is used for new traffic.

The next page will explain load balancing in greater detail.

Comments

Popular posts from this blog

OSI layers / Peer-to-peer communications / TCP/IP model

OSI layers 2.3.4 This page discusses the seven layers of the OSI model. The OSI reference model is a framework that is used to understand how information travels throughout a network. The OSI reference model explains how packets travel through the various layers to another device on a network, even if the sender and destination have different types of network media. In the OSI reference model, there are seven numbered layers, each of which illustrates a particular network function. - Dividing the network into seven layers provides the following advantages: • It breaks network communication into smaller, more manageable parts. • It standardizes network components to allow multiple vendor development and support. • It allows different types of network hardware and software to communicate with each other. • It prevents changes in one layer from affecting other layers. • It divides network communication into smaller parts to make learning it easier to understand. In the foll...

Advantages and disadvantages of link-state routing

Advantages and disadvantages of link-state routing 2.1.5  This page lists the advantages and disadvantages of link-state routing protocols. The following are advantages of link-state routing protocols:  Link-state protocols use cost metrics to choose paths through the network. The cost metric reflects the capacity of the links on those paths. Link-state protocols use triggered updates and LSA floods to immediately report changes in the network topology to all routers in the network. This leads to fast convergence times. Each router has a complete and synchronized picture of the network. Therefore, it is very difficult for routing loops to occur. Routers use the latest information to make the best routing decisions. The link-state database sizes can be minimized with careful network design. This leads to smaller Dijkstra calculations and faster convergence. Every router, at the very least, maps the topology of it...

Ports for services

Ports for services 10.2.2  Services running on hosts must have a port number assigned to them so communication can occur. A remote host attempting to connect to a service expects that service to use specific transport layer protocols and ports. Some ports, which are defined in RFC 1700, are known as the well-known ports. These ports are reserved in both TCP and UDP.  These well-known ports define applications that run above the transport layer protocols. For example, a server that runs FTP will use ports 20 and 21 to forward TCP connections from clients to its FTP application. This allows the server to determine which service a client requests. TCP and UDP use port numbers to determine the correct service to which requests are forwarded. The next page will discuss ports in greater detail.