Skip to main content

Router user interface modes

Router user interface modes
2.1.3 This page will introduce two user interface modes that can be configured for Cisco IOS.


The Cisco CLI uses a hierarchical structure. This structure requires entry into different modes to accomplish particular tasks. For example, to configure a router interface, the user must enter interface configuration mode. All configurations that are entered in interface configuration mode apply only to that interface. Each configuration mode is indicated with a distinctive prompt and allows only commands that are appropriate for that mode.

The IOS provides a command interpreter service known as the command executive (EXEC). After each command is entered, the EXEC validates and executes the command.

As a security feature the Cisco IOS software separates the EXEC sessions into two access levels. These levels are user EXEC mode and privileged EXEC mode. The privileged EXEC mode is also known as enable mode. The following are the features of the user EXEC mode and privileged EXEC mode:

• The user EXEC mode allows only a limited number of basic monitoring commands. This is often referred to as a view only mode. The user EXEC level does not allow any commands that might change the configuration of the router. The user EXEC mode can be identified by the > prompt.

• The privileged EXEC mode provides access to all router commands. This mode can be configured to require a password. For added protection, it can also be configured to require a user ID. This allows only authorized users to access the router. Configuration and management commands require that the network administrator be at the privileged EXEC level. Global configuration mode and all other more specific configuration modes can only be reached from the privileged EXEC mode. The privileged EXEC mode can be identified by the # prompt.

To access the privileged EXEC level from the user EXEC level, enter the enable command at the > prompt. If a password is configured, the router will then ask for that password. For security reasons, a Cisco network device will not show the password that is entered. When the correct password is entered, the router prompt will change to #. This indicates that the user is at the privileged EXEC level. When a question mark, ?, is entered at the privileged EXEC level, it will reveal many more command options than available at the user EXEC level.

The next page covers some additional features of Cisco IOS.

Comments

Popular posts from this blog

OSI layers / Peer-to-peer communications / TCP/IP model

OSI layers 2.3.4 This page discusses the seven layers of the OSI model. The OSI reference model is a framework that is used to understand how information travels throughout a network. The OSI reference model explains how packets travel through the various layers to another device on a network, even if the sender and destination have different types of network media. In the OSI reference model, there are seven numbered layers, each of which illustrates a particular network function. - Dividing the network into seven layers provides the following advantages: • It breaks network communication into smaller, more manageable parts. • It standardizes network components to allow multiple vendor development and support. • It allows different types of network hardware and software to communicate with each other. • It prevents changes in one layer from affecting other layers. • It divides network communication into smaller parts to make learning it easier to understand. In the foll...

Advantages and disadvantages of link-state routing

Advantages and disadvantages of link-state routing 2.1.5  This page lists the advantages and disadvantages of link-state routing protocols. The following are advantages of link-state routing protocols:  Link-state protocols use cost metrics to choose paths through the network. The cost metric reflects the capacity of the links on those paths. Link-state protocols use triggered updates and LSA floods to immediately report changes in the network topology to all routers in the network. This leads to fast convergence times. Each router has a complete and synchronized picture of the network. Therefore, it is very difficult for routing loops to occur. Routers use the latest information to make the best routing decisions. The link-state database sizes can be minimized with careful network design. This leads to smaller Dijkstra calculations and faster convergence. Every router, at the very least, maps the topology of it...

Ports for services

Ports for services 10.2.2  Services running on hosts must have a port number assigned to them so communication can occur. A remote host attempting to connect to a service expects that service to use specific transport layer protocols and ports. Some ports, which are defined in RFC 1700, are known as the well-known ports. These ports are reserved in both TCP and UDP.  These well-known ports define applications that run above the transport layer protocols. For example, a server that runs FTP will use ports 20 and 21 to forward TCP connections from clients to its FTP application. This allows the server to determine which service a client requests. TCP and UDP use port numbers to determine the correct service to which requests are forwarded. The next page will discuss ports in greater detail.