Skip to main content

CLI command modes

CLI command modes
3.1.1 This page will discuss some features that are available from global configuration mode.


All CLI configuration changes to a Cisco router are made from global configuration mode, which is sometimes called global config. Global config is the primary configuration mode. Specific modes are used for various configuration changes, but these modes are all subsets of the global configuration mode.

Global configuration mode commands are used in a router to apply configuration statements that affect the system as a whole. The following command moves the router into global configuration mode and allows entry of commands from the terminal:

Note:

The prompt changes to indicate that the router is now in global configuration mode.

Router#configure terminal

Router(config)#

The prompt will change to indicate that the router is in global configuration mode. Here are a few of the modes that can be entered from global configuration mode:

• Interface mode
• Line mode
• Router mode
• Subinterface mode
• Controller mode

When these specific modes are entered, the router prompt changes to indicate the current configuration mode. Any configuration changes that are made will apply only to the interfaces or processes covered by the particular mode.

Type exit from one of the specific modes to return a router to global configuration mode. Pressing Ctrl-Z leaves the configuration modes completely and returns the router to privileged EXEC mode.

The next page will teach students how to configure a router name in global configuration mode.

Comments

Popular posts from this blog

OSI layers / Peer-to-peer communications / TCP/IP model

OSI layers 2.3.4 This page discusses the seven layers of the OSI model. The OSI reference model is a framework that is used to understand how information travels throughout a network. The OSI reference model explains how packets travel through the various layers to another device on a network, even if the sender and destination have different types of network media. In the OSI reference model, there are seven numbered layers, each of which illustrates a particular network function. - Dividing the network into seven layers provides the following advantages: • It breaks network communication into smaller, more manageable parts. • It standardizes network components to allow multiple vendor development and support. • It allows different types of network hardware and software to communicate with each other. • It prevents changes in one layer from affecting other layers. • It divides network communication into smaller parts to make learning it easier to understand. In the foll...

Advantages and disadvantages of link-state routing

Advantages and disadvantages of link-state routing 2.1.5  This page lists the advantages and disadvantages of link-state routing protocols. The following are advantages of link-state routing protocols:  Link-state protocols use cost metrics to choose paths through the network. The cost metric reflects the capacity of the links on those paths. Link-state protocols use triggered updates and LSA floods to immediately report changes in the network topology to all routers in the network. This leads to fast convergence times. Each router has a complete and synchronized picture of the network. Therefore, it is very difficult for routing loops to occur. Routers use the latest information to make the best routing decisions. The link-state database sizes can be minimized with careful network design. This leads to smaller Dijkstra calculations and faster convergence. Every router, at the very least, maps the topology of it...

Ports for services

Ports for services 10.2.2  Services running on hosts must have a port number assigned to them so communication can occur. A remote host attempting to connect to a service expects that service to use specific transport layer protocols and ports. Some ports, which are defined in RFC 1700, are known as the well-known ports. These ports are reserved in both TCP and UDP.  These well-known ports define applications that run above the transport layer protocols. For example, a server that runs FTP will use ports 20 and 21 to forward TCP connections from clients to its FTP application. This allows the server to determine which service a client requests. TCP and UDP use port numbers to determine the correct service to which requests are forwarded. The next page will discuss ports in greater detail.