Skip to main content

Module 2: Introduction to Routers / Overview / The purpose of Cisco IOS software

Module 2: Introduction to Routers
Overview: Cisco technology is based on the Cisco IOS, which is the software that controls the routing and switching functions of network devices. A solid understanding of the IOS is essential for a network administrator. This module will introduce the main features of the IOS and will provide practice in working with the IOS. All network configuration tasks, from the most basic to the most complex, require a strong foundation in the basics of router configuration. This module will provide the tools and techniques for basic router configuration that will be used throughout this course.


This module covers some of the objectives for the CCNA 640-801, INTRO 640-821, and ICND 640-811 exams. -

Students who complete this module should be able to perform the following tasks:

• Describe the purpose of the IOS
• Describe the basic operation of the IOS
• Identify various IOS features
• Identify the methods to establish a command-line interface (CLI) session with the router
• Alternate between the user executive (EXEC) and privileged EXEC modes
• Establish a HyperTerminal session on a router
• Log into a router
• Use the help feature in the command line interface
• Troubleshoot command errors

The purpose of Cisco IOS software 
2.1.1 As with a computer, a router or switch cannot function without an operating system. This page will review the Cisco IOS. It is the embedded software architecture in all of the Cisco routers and is also the operating system of the Catalyst switches. Without an operating system, the hardware does not have any capabilities. The Cisco IOS provides the following network services:


• Basic routing and switching functions
• Reliable and secure access to networked resources
• Network scalability

The next page will discuss the Cisco IOS environment for a router.

Comments

Popular posts from this blog

OSI layers / Peer-to-peer communications / TCP/IP model

OSI layers 2.3.4 This page discusses the seven layers of the OSI model. The OSI reference model is a framework that is used to understand how information travels throughout a network. The OSI reference model explains how packets travel through the various layers to another device on a network, even if the sender and destination have different types of network media. In the OSI reference model, there are seven numbered layers, each of which illustrates a particular network function. - Dividing the network into seven layers provides the following advantages: • It breaks network communication into smaller, more manageable parts. • It standardizes network components to allow multiple vendor development and support. • It allows different types of network hardware and software to communicate with each other. • It prevents changes in one layer from affecting other layers. • It divides network communication into smaller parts to make learning it easier to understand. In the foll...

Advantages and disadvantages of link-state routing

Advantages and disadvantages of link-state routing 2.1.5  This page lists the advantages and disadvantages of link-state routing protocols. The following are advantages of link-state routing protocols:  Link-state protocols use cost metrics to choose paths through the network. The cost metric reflects the capacity of the links on those paths. Link-state protocols use triggered updates and LSA floods to immediately report changes in the network topology to all routers in the network. This leads to fast convergence times. Each router has a complete and synchronized picture of the network. Therefore, it is very difficult for routing loops to occur. Routers use the latest information to make the best routing decisions. The link-state database sizes can be minimized with careful network design. This leads to smaller Dijkstra calculations and faster convergence. Every router, at the very least, maps the topology of it...

Ports for services

Ports for services 10.2.2  Services running on hosts must have a port number assigned to them so communication can occur. A remote host attempting to connect to a service expects that service to use specific transport layer protocols and ports. Some ports, which are defined in RFC 1700, are known as the well-known ports. These ports are reserved in both TCP and UDP.  These well-known ports define applications that run above the transport layer protocols. For example, a server that runs FTP will use ports 20 and 21 to forward TCP connections from clients to its FTP application. This allows the server to determine which service a client requests. TCP and UDP use port numbers to determine the correct service to which requests are forwarded. The next page will discuss ports in greater detail.