Layer 2 bridging
8.1.1 This page will discuss the operation of Layer 2 bridges.
As more nodes are added to an Ethernet segment, use of the media increases. Ethernet is a shared media, which means only one node can transmit data at a time. The addition of more nodes increases the demands on the available bandwidth and places additional loads on the media. This also increases the probability of collisions, which results in more retransmissions. A solution to the problem is to break the large segment into parts and separate it into isolated collision domains.
To accomplish this a bridge keeps a table of MAC addresses and the associated ports. The bridge then forwards or discards frames based on the table entries. The following steps illustrate the operation of a bridge:
• The bridge has just been started so the bridge table is empty. The bridge just waits for traffic on the segment. When traffic is detected, it is processed by the bridge.
• Host A pings Host B. Since the data is transmitted on the entire collision domain segment, both the bridge and Host B process the packet.
• The bridge adds the source address of the frame to its bridge table. Since the address was in the source address field and the frame was received on Port 1, the frame must be associated with Port 1 in the table.
• The destination address of the frame is checked against the bridge table. Since the address is not in the table, even though it is on the same collision domain, the frame is forwarded to the other segment. The address of Host B has not been recorded yet.
• Host B processes the ping request and transmits a ping reply back to Host A. The data is transmitted over the whole collision domain. Both Host A and the bridge receive the frame and process it.
• The bridge adds the source address of the frame to its bridge table. Since the source address was not in the bridge table and was received on Port 1, the source address of the frame must be associated with Port 1 in the table.
• The destination address of the frame is checked against the bridge table to see if its entry is there. Since the address is in the table, the port assignment is checked. The address of Host A is associated with the port the frame was received on, so the frame is not forwarded.
• Host A pings Host C. Since the data is transmitted on the entire collision domain segment, both the bridge and Host B process the frame. Host B discards the frame since it was not the intended destination.
• The bridge adds the source address of the frame to its bridge table. Since the address is already entered into the bridge table the entry is just renewed.
• The destination address of the frame is checked against the bridge table. Since the address is not in the table, the frame is forwarded to the other segment. The address of Host C has not been recorded yet.
• Host C processes the ping request and transmits a ping reply back to Host A. The data is transmitted over the whole collision domain. Both Host D and the bridge receive the frame and process it. Host D discards the frame since it is not the intended destination.
• The bridge adds the source address of the frame to its bridge table. Since the address was in the source address field and the frame was received on Port 2, the frame must be associated with Port 2 in the table.
• The destination address of the frame is checked against the bridge table to see if its entry is present. The address is in the table but it is associated with Port 1, so the frame is forwarded to the other segment.
• When Host D transmits data, its MAC address will also be recorded in the bridge table. This is how the bridge controls traffic between to collision domains.
These are the steps that a bridge uses to forward and discard frames that are received on any of its ports.
The next page will describe Layer 2 switching.
Layer 2 switching
8.1.2 This page will discuss Layer 2 switches.
Generally, a bridge has only two ports and divides a collision domain into two parts. All decisions made by a bridge are based on MAC or Layer 2 addresses and do not affect the logical or Layer 3 addresses. A bridge will divide a collision domain but has no effect on a logical or broadcast domain. If a network does not have a device that works with Layer 3 addresses, such as a router, the entire network will share the same logical broadcast address space. A bridge will create more collision domains but will not add broadcast domains.
A switch is essentially a fast, multi-port bridge that can contain dozens of ports. Each port creates its own collision domain. In a network of 20 nodes, 20 collision domains exist if each node is plugged into its own switch port. If an uplink port is included, one switch creates 21 single-node collision domains. A switch dynamically builds and maintains a content-addressable memory (CAM) table, which holds all of the necessary MAC information for each port.
The next page will explain how a switch operates
Friday, February 26, 2010
Module 8: Ethernet Switching Overview
Ethernet Switching Overview
Shared Ethernet works extremely well under ideal conditions. If the number of devices that try to access the network is low, the number of collisions stays well within acceptable limits. However, when the number of users on the network increases, the number of collisions can significantly reduce performance. Bridges were developed to help correct performance problems that arose from increased collisions. Switches evolved from bridges to become the main technology in modern Ethernet LANs.
Collisions and broadcasts are expected events in modern networks. They are engineered into the design of Ethernet and higher layer technologies. However, when collisions and broadcasts occur in numbers that are above the optimum, network performance suffers. Collision domains and broadcast domains should be designed to limit the negative effects of collisions and broadcasts. This module explores the effects of collisions and broadcasts on network traffic and then describes how bridges and routers are used to segment networks for improved performance.
This module covers some of the objectives for the CCNA 640-801, INTRO 640-821, and ICND 640-811 exams.
Students who complete this module should be able to perform the following tasks:
• Define bridging and switching
• Define and describe the content-addressable memory (CAM) table
• Define latency
• Describe store-and-forward and cut-through packet switching modes
• Explain Spanning-Tree Protocol (STP)
• Define collisions, broadcasts, collision domains, and broadcast domains
• Identify the Layers 1, 2, and 3 devices used to create collision domains and broadcast domains
• Discuss data flow and problems with broadcasts
• Explain network segmentation and list the devices used to create segments
Shared Ethernet works extremely well under ideal conditions. If the number of devices that try to access the network is low, the number of collisions stays well within acceptable limits. However, when the number of users on the network increases, the number of collisions can significantly reduce performance. Bridges were developed to help correct performance problems that arose from increased collisions. Switches evolved from bridges to become the main technology in modern Ethernet LANs.
Collisions and broadcasts are expected events in modern networks. They are engineered into the design of Ethernet and higher layer technologies. However, when collisions and broadcasts occur in numbers that are above the optimum, network performance suffers. Collision domains and broadcast domains should be designed to limit the negative effects of collisions and broadcasts. This module explores the effects of collisions and broadcasts on network traffic and then describes how bridges and routers are used to segment networks for improved performance.
This module covers some of the objectives for the CCNA 640-801, INTRO 640-821, and ICND 640-811 exams.
Students who complete this module should be able to perform the following tasks:
• Define bridging and switching
• Define and describe the content-addressable memory (CAM) table
• Define latency
• Describe store-and-forward and cut-through packet switching modes
• Explain Spanning-Tree Protocol (STP)
• Define collisions, broadcasts, collision domains, and broadcast domains
• Identify the Layers 1, 2, and 3 devices used to create collision domains and broadcast domains
• Discuss data flow and problems with broadcasts
• Explain network segmentation and list the devices used to create segments
Summary of Module 7
Summary
This page summarizes the topics discussed in this module.
Ethernet is a technology that has increased in speed one thousand times, from 10 Mbps to 10,000 Mbps, in less than a decade. All forms of Ethernet share a similar frame structure and this leads to excellent interoperability. Most Ethernet copper connections are now switched full duplex, and the fastest copper-based Ethernet is 1000BASE-T, or Gigabit Ethernet. 10 Gigabit Ethernet and faster are exclusively optical fiber-based technologies.
10BASE5, 10BASE2, and 10BASE-T Ethernet are considered Legacy Ethernet. The four common features of Legacy Ethernet are timing parameters, frame format, transmission process, and a basic design rule.
Legacy Ethernet encodes data on an electrical signal. The form of encoding used in 10 Mbps systems is called Manchester encoding. Manchester encoding uses a change in voltage to represent the binary numbers zero and one. An increase or decrease in voltage during a timed period, called the bit period, determines the binary value of the bit.
In addition to a standard bit period, Ethernet standards set limits for slot time and interframe spacing. Different types of media can affect transmission timing and timing standards ensure interoperability. 10 Mbps Ethernet operates within the timing limits offered by a series of no more than five segments separated by no more than four repeaters.
A single thick coaxial cable was the first medium used for Ethernet. 10BASE2, using a thinner coax cable, was introduced in 1985. 10BASE-T, using twisted-pair copper wire, was introduced in 1990. Because it used multiple wires 10BASE-T offered the option of full-duplex signaling. 10BASE-T carries 10 Mbps of traffic in half-duplex mode and 20 Mbps in full-duplex mode.
10BASE-T links can have unrepeated distances up to 100 m. Beyond that network devices such as repeaters, hub, bridges and switches are used to extend the scope of the LAN. With the advent of switches, the 4-repeater rule is not so relevant. You can extend the LAN indefinitely by daisy-chaining switches. Each switch-to-switch connection, with maximum length of 100m, is essentially a point-to-point connection without the media contention or timing issues of using repeaters and hubs.
100-Mbps Ethernet, also known as Fast Ethernet, can be implemented using twisted-pair copper wire, as in 100BASE-TX, or fiber media, as in 100BASE-FX. 100 Mbps forms of Ethernet can transmit 200 Mbps in full duplex.
Because the higher frequency signals used in Fast Ethernet are more susceptible to noise, two separate encoding steps are used by 100-Mbps Ethernet to enhance signal integrity.
Gigabit Ethernet over copper wire is accomplished by the following:
• Category 5e UTP cable and careful improvements in electronics are used to boost 100 Mbps per wire pair to 125 Mbps per wire pair.
• All four wire pairs instead of just two. This allows 125 Mbps per wire pair, or 500 Mbps for the four wire pairs.
• Sophisticated electronics allow permanent collisions on each wire pair and run signals in full duplex, doubling the 500 Mbps to 1000 Mbps.
On Gigabit Ethernet networks bit signals occur in one tenth of the time of 100 Mbps networks and 1/100 of the time of 10 Mbps networks. With signals occurring in less time the bits become more susceptible to noise. The issue becomes how fast the network adapter or interface can change voltage levels to signal bits and still be detected reliably one hundred meters away at the receiving NIC or interface. At this speed encoding and decoding data becomes even more complex.
The fiber versions of Gigabit Ethernet, 1000BASE-SX and 1000BASE-LX offer the following advantages: noise immunity, small size, and increased unrepeated distances and bandwidth. The IEEE 802.3 standard recommends that Gigabit Ethernet over fiber be the preferred backbone technology.
This page summarizes the topics discussed in this module.
Ethernet is a technology that has increased in speed one thousand times, from 10 Mbps to 10,000 Mbps, in less than a decade. All forms of Ethernet share a similar frame structure and this leads to excellent interoperability. Most Ethernet copper connections are now switched full duplex, and the fastest copper-based Ethernet is 1000BASE-T, or Gigabit Ethernet. 10 Gigabit Ethernet and faster are exclusively optical fiber-based technologies.
10BASE5, 10BASE2, and 10BASE-T Ethernet are considered Legacy Ethernet. The four common features of Legacy Ethernet are timing parameters, frame format, transmission process, and a basic design rule.
Legacy Ethernet encodes data on an electrical signal. The form of encoding used in 10 Mbps systems is called Manchester encoding. Manchester encoding uses a change in voltage to represent the binary numbers zero and one. An increase or decrease in voltage during a timed period, called the bit period, determines the binary value of the bit.
In addition to a standard bit period, Ethernet standards set limits for slot time and interframe spacing. Different types of media can affect transmission timing and timing standards ensure interoperability. 10 Mbps Ethernet operates within the timing limits offered by a series of no more than five segments separated by no more than four repeaters.
A single thick coaxial cable was the first medium used for Ethernet. 10BASE2, using a thinner coax cable, was introduced in 1985. 10BASE-T, using twisted-pair copper wire, was introduced in 1990. Because it used multiple wires 10BASE-T offered the option of full-duplex signaling. 10BASE-T carries 10 Mbps of traffic in half-duplex mode and 20 Mbps in full-duplex mode.
10BASE-T links can have unrepeated distances up to 100 m. Beyond that network devices such as repeaters, hub, bridges and switches are used to extend the scope of the LAN. With the advent of switches, the 4-repeater rule is not so relevant. You can extend the LAN indefinitely by daisy-chaining switches. Each switch-to-switch connection, with maximum length of 100m, is essentially a point-to-point connection without the media contention or timing issues of using repeaters and hubs.
100-Mbps Ethernet, also known as Fast Ethernet, can be implemented using twisted-pair copper wire, as in 100BASE-TX, or fiber media, as in 100BASE-FX. 100 Mbps forms of Ethernet can transmit 200 Mbps in full duplex.
Because the higher frequency signals used in Fast Ethernet are more susceptible to noise, two separate encoding steps are used by 100-Mbps Ethernet to enhance signal integrity.
Gigabit Ethernet over copper wire is accomplished by the following:
• Category 5e UTP cable and careful improvements in electronics are used to boost 100 Mbps per wire pair to 125 Mbps per wire pair.
• All four wire pairs instead of just two. This allows 125 Mbps per wire pair, or 500 Mbps for the four wire pairs.
• Sophisticated electronics allow permanent collisions on each wire pair and run signals in full duplex, doubling the 500 Mbps to 1000 Mbps.
On Gigabit Ethernet networks bit signals occur in one tenth of the time of 100 Mbps networks and 1/100 of the time of 10 Mbps networks. With signals occurring in less time the bits become more susceptible to noise. The issue becomes how fast the network adapter or interface can change voltage levels to signal bits and still be detected reliably one hundred meters away at the receiving NIC or interface. At this speed encoding and decoding data becomes even more complex.
The fiber versions of Gigabit Ethernet, 1000BASE-SX and 1000BASE-LX offer the following advantages: noise immunity, small size, and increased unrepeated distances and bandwidth. The IEEE 802.3 standard recommends that Gigabit Ethernet over fiber be the preferred backbone technology.
10-Gigabit Ethernet architectures / Future of Ethernet
10-Gigabit Ethernet architectures
7.2.6 This page describes the 10-Gigabit Ethernet architectures.
As with the development of Gigabit Ethernet, the increase in speed comes with extra requirements. The shorter bit time duration because of increased speed requires special considerations. For 10 GbE transmissions, each data bit duration is 0.1 nanosecond. This means there would be 1,000 GbE data bits in the same bit time as one data bit in a 10-Mbps Ethernet data stream. Because of the short duration of the 10 GbE data bit, it is often difficult to separate a data bit from noise. 10 GbE data transmissions rely on exact bit timing to separate the data from the effects of noise on the physical layer. This is the purpose of synchronization.
In response to these issues of synchronization, bandwidth, and Signal-to-Noise Ratio, 10-Gigabit Ethernet uses two separate encoding steps. By using codes to represent the user data, transmission is made more efficient. The encoded data provides synchronization, efficient usage of bandwidth, and improved Signal-to-Noise Ratio characteristics.
Complex serial bit streams are used for all versions of 10GbE except for 10GBASE-LX4, which uses Wide Wavelength Division Multiplex (WWDM) to multiplex four bit simultaneous bit streams as four wavelengths of light launched into the fiber at one time.
Figure represents the particular case of using four slightly different wavelength, laser sources. Upon receipt from the medium, the optical signal stream is demultiplexed into four separate optical signal streams. The four optical signal streams are then converted back into four electronic bit streams as they travel in approximately the reverse process back up through the sublayers to the MAC layer.
Currently, most 10GbE products are in the form of modules, or line cards, for addition to high-end switches and routers. As the 10GbE technologies evolve, an increasing diversity of signaling components can be expected. As optical technologies evolve, improved transmitters and receivers will be incorporated into these products, taking further advantage of modularity. All 10GbE varieties use optical fiber media. Fiber types include 10µ single-mode Fiber, and 50µ and 62.5µ multimode fibers. A range of fiber attenuation and dispersion characteristics is supported, but they limit operating distances.
Even though support is limited to fiber optic media, some of the maximum cable lengths are surprisingly short. No repeater is defined for 10-Gigabit Ethernet since half duplex is explicitly not supported.
As with 10 Mbps, 100 Mbps and 1000 Mbps versions, it is possible to modify some of the architecture rules slightly. Possible architecture adjustments are related to signal loss and distortion along the medium. Due to dispersion of the signal and other issues the light pulse becomes undecipherable beyond certain distances.
The next page will discuss the future of Ethernet.
Future of Ethernet
7.2.7 Ethernet has gone through an evolution from Legacy —> Fast —> Gigabit —> MultiGigabit technologies. While other LAN technologies are still in place (legacy installations), Ethernet dominates new LAN installations. So much so that some have referred to Ethernet as the LAN “dial tone”. Ethernet is now the standard for horizontal, vertical, and inter-building connections. Recently developing versions of Ethernet are blurring the distinction between LANs, MANs, and WANs.
While 1-Gigabit Ethernet is now widely available and 10-Gigabit products becoming more available, the IEEE and the 10-Gigabit Ethernet Alliance are working on 40, 100, or even 160 Gbps standards. The technologies that are adopted will depend on a number of factors, including the rate of maturation of the technologies and standards, the rate of adoption in the market, and cost.
Proposals for Ethernet arbitration schemes other than CSMA/CD have been made. The problem of collisions with physical bus topologies of 10BASE5 and 10BASE2 and 10BASE-T and 100BASE-TX hubs is no longer common. Using UTP and optical fiber with separate Tx and Rx paths, and the decreasing costs of switches make single shared media, half-duplex media connections much less important.
The future of networking media is three-fold:
1. Copper (up to 1000 Mbps, perhaps more)
2. Wireless (approaching 100 Mbps, perhaps more)
3. Optical fiber (currently at 10,000 Mbps and soon to be more)
Copper and wireless media have certain physical and practical limitations on the highest frequency signals that can be transmitted. This is not a limiting factor for optical fiber in the foreseeable future. The bandwidth limitations on optical fiber are extremely large and are not yet being threatened. In fiber systems, it is the electronics technology (such as emitters and detectors) and fiber manufacturing processes that most limit the speed. Upcoming developments in Ethernet are likely to be heavily weighted towards Laser light sources and single-mode optical fiber.
When Ethernet was slower, half-duplex, subject to collisions and a “democratic” process for prioritization, was not considered to have the Quality of Service (QoS) capabilities required to handle certain types of traffic. This included such things as IP telephony and video multicast.
The full-duplex high-speed Ethernet technologies that now dominate the market are proving to be sufficient at supporting even QoS-intensive applications. This makes the potential applications of Ethernet even wider. Ironically end-to-end QoS capability helped drive a push for ATM to the desktop and to the WAN in the mid-1990s, but now it is Ethernet, not ATM that is approaching this goal.
This page concludes this lesson. The next page will summarize the main points from the module.
7.2.6 This page describes the 10-Gigabit Ethernet architectures.
As with the development of Gigabit Ethernet, the increase in speed comes with extra requirements. The shorter bit time duration because of increased speed requires special considerations. For 10 GbE transmissions, each data bit duration is 0.1 nanosecond. This means there would be 1,000 GbE data bits in the same bit time as one data bit in a 10-Mbps Ethernet data stream. Because of the short duration of the 10 GbE data bit, it is often difficult to separate a data bit from noise. 10 GbE data transmissions rely on exact bit timing to separate the data from the effects of noise on the physical layer. This is the purpose of synchronization.
In response to these issues of synchronization, bandwidth, and Signal-to-Noise Ratio, 10-Gigabit Ethernet uses two separate encoding steps. By using codes to represent the user data, transmission is made more efficient. The encoded data provides synchronization, efficient usage of bandwidth, and improved Signal-to-Noise Ratio characteristics.
Complex serial bit streams are used for all versions of 10GbE except for 10GBASE-LX4, which uses Wide Wavelength Division Multiplex (WWDM) to multiplex four bit simultaneous bit streams as four wavelengths of light launched into the fiber at one time.
Figure represents the particular case of using four slightly different wavelength, laser sources. Upon receipt from the medium, the optical signal stream is demultiplexed into four separate optical signal streams. The four optical signal streams are then converted back into four electronic bit streams as they travel in approximately the reverse process back up through the sublayers to the MAC layer.
Currently, most 10GbE products are in the form of modules, or line cards, for addition to high-end switches and routers. As the 10GbE technologies evolve, an increasing diversity of signaling components can be expected. As optical technologies evolve, improved transmitters and receivers will be incorporated into these products, taking further advantage of modularity. All 10GbE varieties use optical fiber media. Fiber types include 10µ single-mode Fiber, and 50µ and 62.5µ multimode fibers. A range of fiber attenuation and dispersion characteristics is supported, but they limit operating distances.
Even though support is limited to fiber optic media, some of the maximum cable lengths are surprisingly short. No repeater is defined for 10-Gigabit Ethernet since half duplex is explicitly not supported.
As with 10 Mbps, 100 Mbps and 1000 Mbps versions, it is possible to modify some of the architecture rules slightly. Possible architecture adjustments are related to signal loss and distortion along the medium. Due to dispersion of the signal and other issues the light pulse becomes undecipherable beyond certain distances.
The next page will discuss the future of Ethernet.
Future of Ethernet
7.2.7 Ethernet has gone through an evolution from Legacy —> Fast —> Gigabit —> MultiGigabit technologies. While other LAN technologies are still in place (legacy installations), Ethernet dominates new LAN installations. So much so that some have referred to Ethernet as the LAN “dial tone”. Ethernet is now the standard for horizontal, vertical, and inter-building connections. Recently developing versions of Ethernet are blurring the distinction between LANs, MANs, and WANs.
While 1-Gigabit Ethernet is now widely available and 10-Gigabit products becoming more available, the IEEE and the 10-Gigabit Ethernet Alliance are working on 40, 100, or even 160 Gbps standards. The technologies that are adopted will depend on a number of factors, including the rate of maturation of the technologies and standards, the rate of adoption in the market, and cost.
Proposals for Ethernet arbitration schemes other than CSMA/CD have been made. The problem of collisions with physical bus topologies of 10BASE5 and 10BASE2 and 10BASE-T and 100BASE-TX hubs is no longer common. Using UTP and optical fiber with separate Tx and Rx paths, and the decreasing costs of switches make single shared media, half-duplex media connections much less important.
The future of networking media is three-fold:
1. Copper (up to 1000 Mbps, perhaps more)
2. Wireless (approaching 100 Mbps, perhaps more)
3. Optical fiber (currently at 10,000 Mbps and soon to be more)
Copper and wireless media have certain physical and practical limitations on the highest frequency signals that can be transmitted. This is not a limiting factor for optical fiber in the foreseeable future. The bandwidth limitations on optical fiber are extremely large and are not yet being threatened. In fiber systems, it is the electronics technology (such as emitters and detectors) and fiber manufacturing processes that most limit the speed. Upcoming developments in Ethernet are likely to be heavily weighted towards Laser light sources and single-mode optical fiber.
When Ethernet was slower, half-duplex, subject to collisions and a “democratic” process for prioritization, was not considered to have the Quality of Service (QoS) capabilities required to handle certain types of traffic. This included such things as IP telephony and video multicast.
The full-duplex high-speed Ethernet technologies that now dominate the market are proving to be sufficient at supporting even QoS-intensive applications. This makes the potential applications of Ethernet even wider. Ironically end-to-end QoS capability helped drive a push for ATM to the desktop and to the WAN in the mid-1990s, but now it is Ethernet, not ATM that is approaching this goal.
This page concludes this lesson. The next page will summarize the main points from the module.
Saturday, February 6, 2010
Gigabit Ethernet architecture / 10-Gigabit Ethernet
Gigabit Ethernet architecture
7.2.4 This page will discuss the architecture of Gigabit Ethernet.
The distance limitations of full-duplex links are only limited by the medium, and not the round-trip delay. Since most Gigabit Ethernet is switched, the values in Figures and are the practical limits between devices. Daisy-chaining, star, and extended star topologies are all allowed. The issue then becomes one of logical topology and data flow, not timing or distance limitations.
A 1000BASE-T UTP cable is the same as 10BASE-T and 100BASE-TX cable, except that link performance must meet the higher quality Category 5e or ISO Class D (2000) requirements.
Modification of the architecture rules is strongly discouraged for 1000BASE-T. At 100 meters, 1000BASE-T is operating close to the edge of the ability of the hardware to recover the transmitted signal. Any cabling problems or environmental noise could render an otherwise compliant cable inoperable even at distances that are within the specification.
It is recommended that all links between a station and a hub or switch be configured for Auto-Negotiation to permit the highest common performance. This will avoid accidental misconfiguration of the other required parameters for proper Gigabit Ethernet operation.
The next page will discuss 10-Gigabit Ethernet.
10-Gigabit Ethernet
7.2.5 This page will describe 10-Gigabit Ethernet and compare it to other versions of Ethernet.
IEEE 802.3ae was adapted to include 10 Gbps full-duplex transmission over fiber optic cable. The basic similarities between 802.3ae and 802.3, the original Ethernet are remarkable. This 10-Gigabit Ethernet (10GbE) is evolving for not only LANs, but also MANs, and WANs.
With the frame format and other Ethernet Layer 2 specifications compatible with previous standards, 10GbE can provide increased bandwidth needs that are interoperable with existing network infrastructure.
A major conceptual change for Ethernet is emerging with 10GbE. Ethernet is traditionally thought of as a LAN technology, but 10GbE physical layer standards allow both an extension in distance to 40 km over single-mode fiber and compatibility with synchronous optical network (SONET) and synchronous digital hierarchy (SDH) networks. Operation at 40 km distance makes 10GbE a viable MAN technology. Compatibility with SONET/SDH networks operating up to OC-192 speeds (9.584640 Gbps) make 10GbE a viable WAN technology. 10GbE may also compete with ATM for certain applications.
To summarize, how does 10GbE compare to other varieties of Ethernet?
• Frame format is the same, allowing interoperability between all varieties of legacy, fast, gigabit, and 10 gigabit, with no reframing or protocol conversions.
• Bit time is now 0.1 nanoseconds. All other time variables scale accordingly.
• Since only full-duplex fiber connections are used, CSMA/CD is not necessary.
• The IEEE 802.3 sublayers within OSI Layers 1 and 2 are mostly preserved, with a few additions to accommodate 40 km fiber links and interoperability with SONET/SDH technologies.
• Flexible, efficient, reliable, relatively low cost end-to-end Ethernet networks become possible.
• TCP/IP can run over LANs, MANs, and WANs with one Layer 2 transport method.
The basic standard governing CSMA/CD is IEEE 802.3. An IEEE 802.3 supplement, entitled 802.3ae, governs the 10GbE family. As is typical for new technologies, a variety of implementations are being considered, including:
• 10GBASE-SR – Intended for short distances over already-installed multimode fiber, supports a range between 26 m to 82 m
• 10GBASE-LX4 – Uses wavelength division multiplexing (WDM), supports 240 m to 300 m over already-installed multimode fiber and 10 km over single-mode fiber
• 10GBASE-LR and 10GBASE-ER – Support 10 km and 40 km over single-mode fiber
• 10GBASE-SW, 10GBASE-LW, and 10GBASE-EW – Known collectively as 10GBASE-W, intended to work with OC-192 synchronous transport module SONET/SDH WAN equipment
The IEEE 802.3ae Task force and the 10-Gigabit Ethernet Alliance (10 GEA) are working to standardize these emerging technologies.
10-Gbps Ethernet (IEEE 802.3ae) was standardized in June 2002. It is a full-duplex protocol that uses only optic fiber as a transmission medium. The maximum transmission distances depend on the type of fiber being used. When using single-mode fiber as the transmission medium, the maximum transmission distance is 40 kilometers (25 miles). Some discussions between IEEE members have begun that suggest the possibility of standards for 40, 80, and even 100-Gbps Ethernet.
The next page will discuss the architecture of 10-Gigabit Ethernet.
7.2.4 This page will discuss the architecture of Gigabit Ethernet.
The distance limitations of full-duplex links are only limited by the medium, and not the round-trip delay. Since most Gigabit Ethernet is switched, the values in Figures and are the practical limits between devices. Daisy-chaining, star, and extended star topologies are all allowed. The issue then becomes one of logical topology and data flow, not timing or distance limitations.
A 1000BASE-T UTP cable is the same as 10BASE-T and 100BASE-TX cable, except that link performance must meet the higher quality Category 5e or ISO Class D (2000) requirements.
Modification of the architecture rules is strongly discouraged for 1000BASE-T. At 100 meters, 1000BASE-T is operating close to the edge of the ability of the hardware to recover the transmitted signal. Any cabling problems or environmental noise could render an otherwise compliant cable inoperable even at distances that are within the specification.
It is recommended that all links between a station and a hub or switch be configured for Auto-Negotiation to permit the highest common performance. This will avoid accidental misconfiguration of the other required parameters for proper Gigabit Ethernet operation.
The next page will discuss 10-Gigabit Ethernet.
10-Gigabit Ethernet
7.2.5 This page will describe 10-Gigabit Ethernet and compare it to other versions of Ethernet.
IEEE 802.3ae was adapted to include 10 Gbps full-duplex transmission over fiber optic cable. The basic similarities between 802.3ae and 802.3, the original Ethernet are remarkable. This 10-Gigabit Ethernet (10GbE) is evolving for not only LANs, but also MANs, and WANs.
With the frame format and other Ethernet Layer 2 specifications compatible with previous standards, 10GbE can provide increased bandwidth needs that are interoperable with existing network infrastructure.
A major conceptual change for Ethernet is emerging with 10GbE. Ethernet is traditionally thought of as a LAN technology, but 10GbE physical layer standards allow both an extension in distance to 40 km over single-mode fiber and compatibility with synchronous optical network (SONET) and synchronous digital hierarchy (SDH) networks. Operation at 40 km distance makes 10GbE a viable MAN technology. Compatibility with SONET/SDH networks operating up to OC-192 speeds (9.584640 Gbps) make 10GbE a viable WAN technology. 10GbE may also compete with ATM for certain applications.
To summarize, how does 10GbE compare to other varieties of Ethernet?
• Frame format is the same, allowing interoperability between all varieties of legacy, fast, gigabit, and 10 gigabit, with no reframing or protocol conversions.
• Bit time is now 0.1 nanoseconds. All other time variables scale accordingly.
• Since only full-duplex fiber connections are used, CSMA/CD is not necessary.
• The IEEE 802.3 sublayers within OSI Layers 1 and 2 are mostly preserved, with a few additions to accommodate 40 km fiber links and interoperability with SONET/SDH technologies.
• Flexible, efficient, reliable, relatively low cost end-to-end Ethernet networks become possible.
• TCP/IP can run over LANs, MANs, and WANs with one Layer 2 transport method.
The basic standard governing CSMA/CD is IEEE 802.3. An IEEE 802.3 supplement, entitled 802.3ae, governs the 10GbE family. As is typical for new technologies, a variety of implementations are being considered, including:
• 10GBASE-SR – Intended for short distances over already-installed multimode fiber, supports a range between 26 m to 82 m
• 10GBASE-LX4 – Uses wavelength division multiplexing (WDM), supports 240 m to 300 m over already-installed multimode fiber and 10 km over single-mode fiber
• 10GBASE-LR and 10GBASE-ER – Support 10 km and 40 km over single-mode fiber
• 10GBASE-SW, 10GBASE-LW, and 10GBASE-EW – Known collectively as 10GBASE-W, intended to work with OC-192 synchronous transport module SONET/SDH WAN equipment
The IEEE 802.3ae Task force and the 10-Gigabit Ethernet Alliance (10 GEA) are working to standardize these emerging technologies.
10-Gbps Ethernet (IEEE 802.3ae) was standardized in June 2002. It is a full-duplex protocol that uses only optic fiber as a transmission medium. The maximum transmission distances depend on the type of fiber being used. When using single-mode fiber as the transmission medium, the maximum transmission distance is 40 kilometers (25 miles). Some discussions between IEEE members have begun that suggest the possibility of standards for 40, 80, and even 100-Gbps Ethernet.
The next page will discuss the architecture of 10-Gigabit Ethernet.
1000BASE-T / 1000BASE-SX and LX
1000BASE-T
7.2.2 This page will describe 1000BASE-T.
As Fast Ethernet was installed to increase bandwidth to workstations, this began to create bottlenecks upstream in the network. The 1000BASE-T standard, which is IEEE 802.3ab, was developed to provide additional bandwidth to help alleviate these bottlenecks. It provided more throughput for devices such as intra-building backbones, inter-switch links, server farms, and other wiring closet applications as well as connections for high-end workstations. Fast Ethernet was designed to function over Category 5 copper cable that passes the Category 5e test. Most installed Category 5 cable can pass the Category 5e certification if properly terminated. It is important for the 1000BASE-T standard to be interoperable with 10BASE-T and 100BASE-TX.
Since Category 5e cable can reliably carry up to 125 Mbps of traffic, 1000 Mbps or 1 Gigabit of bandwidth was a design challenge. The first step to accomplish 1000BASE-T is to use all four pairs of wires instead of the traditional two pairs of wires used by 10BASE-T and 100BASE-TX. This requires complex circuitry that allows full-duplex transmissions on the same wire pair. This provides 250 Mbps per pair. With all four-wire pairs, this provides the desired 1000 Mbps. Since the information travels simultaneously across the four paths, the circuitry has to divide frames at the transmitter and reassemble them at the receiver.
The 1000BASE-T encoding with 4D-PAM5 line encoding is used on Category 5e, or better, UTP. That means the transmission and reception of data happens in both directions on the same wire at the same time. As might be expected, this results in a permanent collision on the wire pairs. These collisions result in complex voltage patterns. With the complex integrated circuits using techniques such as echo cancellation, Layer 1 Forward Error Correction (FEC), and prudent selection of voltage levels, the system achieves the 1-Gigabit throughput.
In idle periods there are nine voltage levels found on the cable, and during data transmission periods there are 17 voltage levels found on the cable. With this large number of states and the effects of noise, the signal on the wire looks more analog than digital. Like analog, the system is more susceptible to noise due to cable and termination problems.
The data from the sending station is carefully divided into four parallel streams, encoded, transmitted and detected in parallel, and then reassembled into one received bit stream. Figure represents the simultaneous full duplex on four-wire pairs. 1000BASE-T supports both half-duplex as well as full-duplex operation. The use of full-duplex 1000BASE-T is widespread.
The next page will introduce 1000BASE-SX and LX
1000BASE-SX and LX
7.2.3 This page will discuss single-mode and multimode optical fiber.
The IEEE 802.3 standard recommends that Gigabit Ethernet over fiber be the preferred backbone technology.
The timing, frame format, and transmission are common to all versions of 1000 Mbps. Two signal-encoding schemes are defined at the physical layer. The 8B/10B scheme is used for optical fiber and shielded copper media, and the pulse amplitude modulation 5 (PAM5) is used for UTP.
1000BASE-X uses 8B/10B encoding converted to non-return to zero (NRZ) line encoding. NRZ encoding relies on the signal level found in the timing window to determine the binary value for that bit period. Unlike most of the other encoding schemes described, this encoding system is level driven instead of edge driven. That is the determination of whether a bit is a zero or a one is made by the level of the signal rather than when the signal changes levels.
The NRZ signals are then pulsed into the fiber using either short-wavelength or long-wavelength light sources. The short-wavelength uses an 850 nm laser or LED source in multimode optical fiber (1000BASE-SX). It is the lower-cost of the options but has shorter distances. The long-wavelength 1310 nm laser source uses either single-mode or multimode optical fiber (1000BASE-LX). Laser sources used with single-mode fiber can achieve distances of up to 5000 meters. Because of the length of time to completely turn the LED or laser on and off each time, the light is pulsed using low and high power. A logic zero is represented by low power, and a logic one by high power.
The Media Access Control method treats the link as point-to-point. Since separate fibers are used for transmitting (Tx) and receiving (Rx) the connection is inherently full duplex. Gigabit Ethernet permits only a single repeater between two stations. Figure is a 1000BASE Ethernet media comparison chart.
The next page describes the architecture of Gigabit Ethernet
7.2.2 This page will describe 1000BASE-T.
As Fast Ethernet was installed to increase bandwidth to workstations, this began to create bottlenecks upstream in the network. The 1000BASE-T standard, which is IEEE 802.3ab, was developed to provide additional bandwidth to help alleviate these bottlenecks. It provided more throughput for devices such as intra-building backbones, inter-switch links, server farms, and other wiring closet applications as well as connections for high-end workstations. Fast Ethernet was designed to function over Category 5 copper cable that passes the Category 5e test. Most installed Category 5 cable can pass the Category 5e certification if properly terminated. It is important for the 1000BASE-T standard to be interoperable with 10BASE-T and 100BASE-TX.
Since Category 5e cable can reliably carry up to 125 Mbps of traffic, 1000 Mbps or 1 Gigabit of bandwidth was a design challenge. The first step to accomplish 1000BASE-T is to use all four pairs of wires instead of the traditional two pairs of wires used by 10BASE-T and 100BASE-TX. This requires complex circuitry that allows full-duplex transmissions on the same wire pair. This provides 250 Mbps per pair. With all four-wire pairs, this provides the desired 1000 Mbps. Since the information travels simultaneously across the four paths, the circuitry has to divide frames at the transmitter and reassemble them at the receiver.
The 1000BASE-T encoding with 4D-PAM5 line encoding is used on Category 5e, or better, UTP. That means the transmission and reception of data happens in both directions on the same wire at the same time. As might be expected, this results in a permanent collision on the wire pairs. These collisions result in complex voltage patterns. With the complex integrated circuits using techniques such as echo cancellation, Layer 1 Forward Error Correction (FEC), and prudent selection of voltage levels, the system achieves the 1-Gigabit throughput.
In idle periods there are nine voltage levels found on the cable, and during data transmission periods there are 17 voltage levels found on the cable. With this large number of states and the effects of noise, the signal on the wire looks more analog than digital. Like analog, the system is more susceptible to noise due to cable and termination problems.
The data from the sending station is carefully divided into four parallel streams, encoded, transmitted and detected in parallel, and then reassembled into one received bit stream. Figure represents the simultaneous full duplex on four-wire pairs. 1000BASE-T supports both half-duplex as well as full-duplex operation. The use of full-duplex 1000BASE-T is widespread.
The next page will introduce 1000BASE-SX and LX
1000BASE-SX and LX
7.2.3 This page will discuss single-mode and multimode optical fiber.
The IEEE 802.3 standard recommends that Gigabit Ethernet over fiber be the preferred backbone technology.
The timing, frame format, and transmission are common to all versions of 1000 Mbps. Two signal-encoding schemes are defined at the physical layer. The 8B/10B scheme is used for optical fiber and shielded copper media, and the pulse amplitude modulation 5 (PAM5) is used for UTP.
1000BASE-X uses 8B/10B encoding converted to non-return to zero (NRZ) line encoding. NRZ encoding relies on the signal level found in the timing window to determine the binary value for that bit period. Unlike most of the other encoding schemes described, this encoding system is level driven instead of edge driven. That is the determination of whether a bit is a zero or a one is made by the level of the signal rather than when the signal changes levels.
The NRZ signals are then pulsed into the fiber using either short-wavelength or long-wavelength light sources. The short-wavelength uses an 850 nm laser or LED source in multimode optical fiber (1000BASE-SX). It is the lower-cost of the options but has shorter distances. The long-wavelength 1310 nm laser source uses either single-mode or multimode optical fiber (1000BASE-LX). Laser sources used with single-mode fiber can achieve distances of up to 5000 meters. Because of the length of time to completely turn the LED or laser on and off each time, the light is pulsed using low and high power. A logic zero is represented by low power, and a logic one by high power.
The Media Access Control method treats the link as point-to-point. Since separate fibers are used for transmitting (Tx) and receiving (Rx) the connection is inherently full duplex. Gigabit Ethernet permits only a single repeater between two stations. Figure is a 1000BASE Ethernet media comparison chart.
The next page describes the architecture of Gigabit Ethernet
Subscribe to:
Posts (Atom)