Saturday, January 16, 2010

IEEE Ethernet naming rules

IEEE Ethernet naming rules
6.1.2 This page focuses on the Ethernet naming rules developed by IEEE.


Ethernet is not one networking technology, but a family of networking technologies that includes Legacy, Fast Ethernet, and Gigabit Ethernet. Ethernet speeds can be 10, 100, 1000, or 10,000 Mbps. The basic frame format and the IEEE sublayers of OSI Layers 1 and 2 remain consistent across all forms of Ethernet.

When Ethernet needs to be expanded to add a new medium or capability, the IEEE issues a new supplement to the 802.3 standard. The new supplements are given a one or two letter designation such as 802.3u. An abbreviated description, called an identifier, is also assigned to the supplement.

The abbreviated description consists of the following elements:

• A number that indicates the number of Mbps transmitted
• The word base to indicate that baseband signaling is used
• One or more letters of the alphabet indicating the type of medium used. For example, F = fiber optical cable and T = copper unshielded twisted pair

Ethernet relies on baseband signaling, which uses the entire bandwidth of the transmission medium. The data signal is transmitted directly over the transmission medium.

In broadband signaling, the data signal is no longer placed directly on the transmission medium. Ethernet used broadband signaling in the 10BROAD36 standard. 10BROAD36 is the IEEE standard for an 802.3 Ethernet network using broadband transmission with thick coaxial cable running at 10 Mbps. 10BROAD36 is now considered obsolete. An analog or carrier signal is modulated by the data signal and then transmitted. Radio broadcasts and cable TV use broadband signaling.

IEEE cannot force manufacturers to fully comply with any standard. IEEE has two main objectives:

• Supply the information necessary to build devices that comply with Ethernet standards
• Promote innovation among manufacturers

Friday, January 8, 2010

Introduction to Ethernet

Introduction to Ethernet
6.1.1 This page provides an introduction to Ethernet. Most of the traffic on the Internet originates and ends with Ethernet connections. Since it began in the 1970s, Ethernet has evolved to meet the increased demand for high-speed LANs. When optical fiber media was introduced, Ethernet adapted to take advantage of the superior bandwidth and low error rate that fiber offers. Now the same protocol that transported data at 3 Mbps in 1973 can carry data at 10 Gbps.


The success of Ethernet is due to the following factors:

• Simplicity and ease of maintenance
• Ability to incorporate new technologies
• Reliability
• Low cost of installation and upgrade

The introduction of Gigabit Ethernet has extended the original LAN technology to distances that make Ethernet a MAN and WAN standard.

The original idea for Ethernet was to allow two or more hosts to use the same medium with no interference between the signals. This problem of multiple user access to a shared medium was studied in the early 1970s at the University of Hawaii. A system called Alohanet was developed to allow various stations on the Hawaiian Islands structured access to the shared radio frequency band in the atmosphere. This work later formed the basis for the Ethernet access method known as CSMA/CD.

The first LAN in the world was the original version of Ethernet. Robert Metcalfe and his coworkers at Xerox designed it more than thirty years ago. The first Ethernet standard was published in 1980 by a consortium of Digital Equipment Company, Intel, and Xerox (DIX). Metcalfe wanted Ethernet to be a shared standard from which everyone could benefit, so it was released as an open standard. The first products that were developed from the Ethernet standard were sold in the early 1980s. Ethernet transmitted at up to 10 Mbps over thick coaxial cable up to a distance of 2 kilometers (km). This type of coaxial cable was referred to as thicknet and was about the width of a small finger.

In 1985, the IEEE standards committee for Local and Metropolitan Networks published standards for LANs. These standards start with the number 802. The standard for Ethernet is 802.3. The IEEE wanted to make sure that its standards were compatible with the International Standards Organization (ISO) and OSI model. To do this, the IEEE 802.3 standard had to address the needs of Layer 1 and the lower portion of Layer 2 of the OSI model. As a result, some small modifications to the original Ethernet standard were made in 802.3.

The differences between the two standards were so minor that any Ethernet NIC can transmit and receive both Ethernet and 802.3 frames. Essentially, Ethernet and IEEE 802.3 are the same standards.

The 10-Mbps bandwidth of Ethernet was more than enough for the slow PCs of the 1980s. By the early 1990s PCs became much faster, file sizes increased, and data flow bottlenecks occurred. Most were caused by the low availability of bandwidth. In 1995, IEEE announced a standard for a 100-Mbps Ethernet. This was followed by standards for Gigabit Ethernet in 1998 and 1999.

All the standards are essentially compatible with the original Ethernet standard. An Ethernet frame could leave an older coax 10-Mbps NIC in a PC, be placed onto a 10-Gbps Ethernet fiber link, and end up at a 100-Mbps NIC. As long as the packet stays on Ethernet networks it is not changed. For this reason Ethernet is considered very scalable. The bandwidth of the network could be increased many times while the Ethernet technology remains the same.

The original Ethernet standard has been amended many times to manage new media and higher transmission rates. These amendments provide standards for new technologies and maintain compatibility between Ethernet variations.

The next page explains the naming rules for the Ethernet family of networks.

Module 6: Ethernet Fundamentals

Overview of Module 6 Ethernet Fundamentals
Ethernet is now the dominant LAN technology in the world. Ethernet is a family of LAN technologies that may be best understood with the OSI reference model. All LANs must deal with the basic issue of how individual stations, or nodes, are named. Ethernet specifications support different media, bandwidths, and other Layer 1 and 2 variations. However, the basic frame format and address scheme is the same for all varieties of Ethernet.


Various MAC strategies have been invented to allow multiple stations to access physical media and network devices. It is important to understand how network devices gain access to the network media before students can comprehend and troubleshoot the entire network.

This module covers some of the objectives for the CCNA 640-801, INTRO 640-821, and ICND 640-811 exams.

Students who complete this module should be able to perform the following tasks:

• Describe the basics of Ethernet technology
• Explain naming rules of Ethernet technology
• Explain how Ethernet relates to the OSI model
• Describe the Ethernet framing process and frame structure
• List Ethernet frame field names and purposes
• Identify the characteristics of CSMA/CD
• Describe Ethernet timing, interframe spacing, and backoff time after a collision
• Define Ethernet errors and collisions
• Explain the concept of auto-negotiation in relation to speed and duplex

Summary of Module 5

Summary
Ethernet is the most widely used LAN technology and can be implemented on a variety of media. Ethernet technologies provide a variety of network speeds, from 10 Mbps to Gigabit Ethernet, which can be applied to appropriate areas of a network. Media and connector requirements differ for various Ethernet implementations.


The connector on a network interface card (NIC) must match the media. A bayonet nut connector (BNC) connector is required to connect to coaxial cable. A fiber connector is required to connect to fiber media. The registered jack (RJ-45) connector used with twisted-pair wire is the most common type of connector used in LAN implementations. Ethernet

When twisted-pair wire is used to connect devices, the appropriate wire sequence, or pinout, must be determined as well. A crossover cable is used to connect two similar devices, such as two PCs. A straight-through cable is used to connect different devices, such as connections between a switch and a PC. A rollover cable is used to connect a PC to the console port of a router.

Repeaters regenerate and retime network signals and allow them to travel a longer distance on the media. Hubs are multi-port repeaters. Data arriving at a hub port is electrically repeated on all the other ports connected to the same network segment, except for the port on which the data arrived. Sometimes hubs are called concentrators, because hubs often serve as a central connection point for an Ethernet LAN.

A wireless network can be created with much less cabling than other networks. The only permanent cabling might be to the access points for the network. At the core of wireless communication are devices called transmitters and receivers. The transmitter converts source data to electromagnetic (EM) waves that are passed to the receiver. The receiver then converts these electromagnetic waves back into data for the destination. The two most common wireless technologies used for networking are infrared (IR) and radio frequency (RF).

There are times when it is necessary to break up a large LAN into smaller, more easily managed segments. The devices that are used to define and connect network segments include bridges, switches, routers, and gateways.

A bridge uses the destination MAC address to determine whether to filter, flood, or copy the frame onto another segment. If placed strategically, a bridge can greatly improve network performance.

A switch is sometimes described as a multi-port bridge. Although there are some similarities between the two, a switch is a more sophisticated device than a bridge. Switches operate at much higher speeds than bridges and can support new functionality, such as virtual LANs.

Routers are responsible for routing data packets from source to destination within the LAN, and for providing connectivity to the WAN. Within a LAN environment the router controls broadcasts, provides local address resolution services, such as ARP and RARP, and may segment the network using a subnetwork structure.

Computers typically communicate with each other by using request/response protocols. One computer issues a request for a service, and a second computer receives and responds to that request. In a peer-to-peer network, networked computers act as equal partners, or peers. As peers, each computer can take on the client function or the server function. In a client/server arrangement, network services are located on a dedicated computer called a server. The server responds to the requests of clients.

WAN connection types include high-speed serial links, ISDN, DSL, and cable modems. Each of these requires a specific media and connector. To interconnect the ISDN BRI port to the service-provider device, a UTP Category 5 straight-through cable with RJ-45 connectors, is used. A phone cable and an RJ-11 connector are used to connect a router for DSL service. Coaxial cable and a BNC connector are used to connect a router for cable service.

In addition to the connection type, it is necessary to determine whether DTE or DCE connectors are required on internetworking devices. The DTE is the endpoint of the user’s private network on the WAN link. The DCE is typically the point where responsibility for delivering data passes to the service provider. When connecting directly to a service provider, or to a device such as a CSU/DSU that will perform signal clocking, the router is a DTE and needs a DTE serial cable. This is typically the case for routers. However, there are cases when the router will need to be the DCE.

Setting up console connections

Setting up console connections
5.2.7 This page will explain how console connections are set up.


To initially configure the Cisco device, a management connection must be directly connected to the device. For Cisco equipment this management attachment is called a console port. The console port allows monitoring and configuration of a Cisco hub, switch, or router.

The cable used between a terminal and a console port is a rollover cable, with RJ-45 connectors. The rollover cable, also known as a console cable, has a different pinout than the straight-through or crossover RJ-45 cables used with Ethernet or the ISDN BRI. The pinout for a rollover is as follows:

1 to 8 
2 to 7
3 to 6
4 to 5
5 to 4
6 to 3
7 to 2
8 to 1

To set up a connection between the terminal and the Cisco console port, perform two steps. First, connect the devices using a rollover cable from the router console port to the workstation serial port. An RJ-45-to-DB-9 or an RJ-45-to-DB-25 adapter may be required for the PC or terminal. Next, configure the terminal emulation application with the following common equipment (COM) port settings: 9600 bps, 8 data bits, no parity, 1 stop bit, and no flow control.

The AUX port is used to provide out-of-band management through a modem. The AUX port must be configured by way of the console port before it can be used. The AUX port also uses the settings of 9600 bps, 8 data bits, no parity, 1 stop bit, and no flow control.

Routers and ISDN BRI connections / Routers and DSL connections / Routers and cable connections

Routers and ISDN BRI connections
5.2.4 This page will help students understand ISDN BRI connections.


With ISDN BRI, two types of interfaces may be used, BRI S/T and BRI U. Determine who is providing the Network Termination 1 (NT1) device in order to determine which interface type is needed.

An NT1 is an intermediate device located between the router and the service provider ISDN switch. The NT1 is used to connect four-wire subscriber wiring to the conventional two-wire local loop. In North America, the customer typically provides the NT1, while in the rest of the world the service provider provides the NT1 device.

It may be necessary to provide an external NT1 if the device is not already integrated into the router. Reviewing the labeling on the router interfaces is usually the easiest way to determine if the router has an integrated NT1. A BRI interface with an integrated NT1 is labeled BRI U. A BRI interface without an integrated NT1 is labeled BRI S/T. Because routers can have multiple ISDN interface types, determine which interface is needed when the router is purchased. The type of BRI interface may be determined by looking at the port label. To interconnect the ISDN BRI port to the service-provider device, use a UTP Category 5 straight-through cable.

Routers and DSL connections
5.2.5 This page describes routers and DSL connections.


The Cisco 827 ADSL router has one asymmetric digital subscriber line (ADSL) interface. To connect an ADSL line to the ADSL port on a router, do the following:

• Connect the phone cable to the ADSL port on the router.

• Connect the other end of the phone cable to the phone jack.

To connect a router for DSL service, use a phone cable with RJ-11 connectors. DSL works over standard telephone lines using pins 3 and 4 on a standard RJ-11 connector.

The next page will discuss cable connections.

Routers and cable connections
5.2.6 This page will explain how routers are connected to cable systems.


The Cisco uBR905 cable access router provides high-speed network access on the cable television system to residential and small office, home office (SOHO) subscribers. The uBR905 router has a coaxial cable, or F-connector, interface that connects directly to the cable system. Coaxial cable and an F connector are used to connect the router and cable system.

Use the following steps to connect the Cisco uBR905 cable access router to the cable system:

• Verify that the router is not connected to power.

• Locate the RF coaxial cable coming from the coaxial cable (TV) wall outlet.

• Install a cable splitter/directional coupler, if needed, to separate signals for TV and computer use. If necessary, also install a high-pass filter to prevent interference between the TV and computer signals.

• Connect the coaxial cable to the F connector of the router. Hand-tighten the connector, making sure that it is finger-tight, and then give it a 1/6 turn with a wrench.

• Make sure that all other coaxial cable connectors, all intermediate splitters, couplers, or ground blocks, are securely tightened from the distribution tap to the Cisco uBR905 router.

Routers and serial connections

Routers and serial connections 5.2.3 This page will describe how routers and serial connections are used in a WAN.


Routers are responsible for routing data packets from source to destination within the LAN, and for providing connectivity to the WAN. Within a LAN environment the router contains broadcasts, provides local address resolution services, such as ARP and RARP, and may segment the network using a subnetwork structure. In order to provide these services the router must be connected to the LAN and WAN.

In addition to determining the cable type, it is necessary to determine whether DTE or DCE connectors are required. The DTE is the endpoint of the user’s device on the WAN link. The DCE is typically the point where responsibility for delivering data passes into the hands of the service provider.

When connecting directly to a service provider, or to a device such as a CSU/DSU that will perform signal clocking, the router is a DTE and needs a DTE serial cable. This is typically the case for routers. However, there are cases when the router will need to be the DCE. When performing a back-to-back router scenario in a test environment, one of the routers will be a DTE and the other will be a DCE.

When cabling routers for serial connectivity, the routers will either have fixed or modular ports. The type of port being used will affect the syntax used later to configure each interface.

Interfaces on routers with fixed serial ports are labeled for port type and port number.

Interfaces on routers with modular serial ports are labeled for port type, slot, and port number. The slot is the location of the module. To configure a port on a modular card, it is necessary to specify the interface using the syntax “port type slot number/port number”. Use the label “serial 1/0”, when the interface is serial, the slot number where the module is installed is slot 1, and the port that is being referenced is port 0.

The next page discusses routers and ISDN BRI connections.