Sunday, November 25, 2012

Compare and contrast distance vector and link-state routing

Compare and contrast distance vector and link-state routing
2.1.6 This page will compare distance vector and link-state routing protocols.
All distance vector protocols learn routes and then send these routes to directly connected neighbors. However, link-state routers advertise the states of their links to all other routers in the area so that each router can build a complete link-state database. These advertisements are called link-state advertisements or LSAs. Unlike distance vector routers, link-state routers can form special relationships with their neighbors and other link-state routers. This is to ensure that the LSA information is properly and efficiently exchanged.
The initial flood of LSAs provides routers with the information that they need to build a link-state database. Routing updates occur only when the network changes. If there are no changes, the routing updates occur after a specific interval. If the network changes, a partial update is sent immediately. The partial update only contains information about links that have changed. Network administrators concerned about WAN link utilization will find these partial and infrequent updates an efficient alternative to distance vector routing protocols, which send out a complete routing table every 30 seconds. When a change occurs, link-state routers are all notified simultaneously by the partial update. Distance vector routers wait for neighbors to note the change, implement the change, and then pass the update to the neighbor routers. 
The benefits of link-state over distance vector protocols include faster convergence and improved bandwidth utilization. Link-state protocols support CIDR and VLSM. This makes them a good choice for complex and scalable networks. In fact, link-state protocols generally outperform distance vector protocols on any size network. Link-state protocols are not implemented on every network because they require more memory and processor power than distance vector protocols and can overwhelm slower equipment. Another reason they are not more widely implemented is the fact that link-state protocols are quite complex. Link-state routing protocols require well-trained administrators to correctly configure and maintain them.
This page concludes this lesson. The next lesson will introduce a link-state routing protocol called OSPF. The first page will provide an overview. 

No comments:

Post a Comment