Skip to main content

Router physical characteristics / Router external connections

Router physical characteristics
1.2.2 This page will help students identify the location of different components on a router.


It is not critical to know the location of the physical components inside the router to understand how to use the router. However in some situations, such as adding memory, it can be very helpful.

The exact components used and their location varies between router models. Figure identifies the internal components of a 2600 router.

Figure shows some of the external connectors on a 2600 router.

The next page will describe the external connections on a router.

Router external connections
1.2.3 This page will describe the three basic types of connections on a router, which are LAN interfaces, WAN interfaces, and management ports.


LAN interfaces allow routers to connect to the LAN media. This is usually some form of Ethernet. However, it could be some other LAN technology such as Token Ring or FDDI.

WANs provide connections through a service provider to a distant site or to the Internet. These may be serial connections or any number of other WAN interfaces. With some types of WAN interfaces, an external device such as a CSU is required to connect the router to the local connection of the service provider. With other types of WAN connections, the router may be directly connected to the service provider.

The function of management ports is different from the other connections. The LAN and WAN connections provide network connections through which packets are forwarded. The management port provides a text-based connection for the configuration and troubleshooting of the router. The common management interfaces are the console and auxiliary ports. These are EIA-232 asynchronous serial ports. They are connected to a communications port on a computer. The computer must run a terminal emulation program to provide a text-based session with the router. Through this session the network administrator can manage the device.

The next page will provide a detailed explanation of management ports.

Comments

Popular posts from this blog

OSI layers / Peer-to-peer communications / TCP/IP model

OSI layers 2.3.4 This page discusses the seven layers of the OSI model. The OSI reference model is a framework that is used to understand how information travels throughout a network. The OSI reference model explains how packets travel through the various layers to another device on a network, even if the sender and destination have different types of network media. In the OSI reference model, there are seven numbered layers, each of which illustrates a particular network function. - Dividing the network into seven layers provides the following advantages: • It breaks network communication into smaller, more manageable parts. • It standardizes network components to allow multiple vendor development and support. • It allows different types of network hardware and software to communicate with each other. • It prevents changes in one layer from affecting other layers. • It divides network communication into smaller parts to make learning it easier to understand. In the foll...

Advantages and disadvantages of link-state routing

Advantages and disadvantages of link-state routing 2.1.5  This page lists the advantages and disadvantages of link-state routing protocols. The following are advantages of link-state routing protocols:  Link-state protocols use cost metrics to choose paths through the network. The cost metric reflects the capacity of the links on those paths. Link-state protocols use triggered updates and LSA floods to immediately report changes in the network topology to all routers in the network. This leads to fast convergence times. Each router has a complete and synchronized picture of the network. Therefore, it is very difficult for routing loops to occur. Routers use the latest information to make the best routing decisions. The link-state database sizes can be minimized with careful network design. This leads to smaller Dijkstra calculations and faster convergence. Every router, at the very least, maps the topology of it...

Ports for services

Ports for services 10.2.2  Services running on hosts must have a port number assigned to them so communication can occur. A remote host attempting to connect to a service expects that service to use specific transport layer protocols and ports. Some ports, which are defined in RFC 1700, are known as the well-known ports. These ports are reserved in both TCP and UDP.  These well-known ports define applications that run above the transport layer protocols. For example, a server that runs FTP will use ports 20 and 21 to forward TCP connections from clients to its FTP application. This allows the server to determine which service a client requests. TCP and UDP use port numbers to determine the correct service to which requests are forwarded. The next page will discuss ports in greater detail.