Skip to main content

Connecting WAN interfaces

Connecting WAN interfaces
1.2.7 This page discusses the different forms of WAN connections.


A WAN uses many different technologies to make data connections across a broad geographic area. WAN communication services are usually leased from service providers. WAN connection types include leased line, circuit-switched, and packet-switched.

For each type of WAN service, the customer premises equipment (CPE), which is often a router, is the DTE. This is connected to the service provider through a DCE device, which is commonly a modem or CSU/DSU. This device is used to convert the data from the DTE into a form acceptable to the WAN service provider.

Perhaps the most commonly used router interfaces for WAN services are serial interfaces. Answer the following questions to select the proper serial cable:

• What is the type of connection to the Cisco device? Cisco routers may use different connectors for the serial interfaces. The interface on the left is a Smart Serial interface. The interface on the right is a DB-60 connection. It is important to select the correct serial cable to connect the network system to the serial devices. This is a critical part in setting up a WAN.

• Is the network system connected to a DTE or DCE device? DTE and DCE are the two types of serial interfaces that devices use to communicate. The key difference between these two is that the DCE device provides the clock signal for the communications on the bus. The device documentation should specify whether it is DTE or DCE.

• Which signaling standard does the device require? For each different device, a different serial standard could be used. Each standard defines the signals on the cable and specifies the connector at the end of the cable. Device documentation should always be consulted for the signaling standard.

• Is a male or female connector required on the cable? If the connector has visible projecting pins, it is male. If the connector has sockets for projecting pins, it is female.

This page concludes Module 1. The next page will provide a summary of the main points from this module.

Comments

Popular posts from this blog

OSI layers / Peer-to-peer communications / TCP/IP model

OSI layers 2.3.4 This page discusses the seven layers of the OSI model. The OSI reference model is a framework that is used to understand how information travels throughout a network. The OSI reference model explains how packets travel through the various layers to another device on a network, even if the sender and destination have different types of network media. In the OSI reference model, there are seven numbered layers, each of which illustrates a particular network function. - Dividing the network into seven layers provides the following advantages: • It breaks network communication into smaller, more manageable parts. • It standardizes network components to allow multiple vendor development and support. • It allows different types of network hardware and software to communicate with each other. • It prevents changes in one layer from affecting other layers. • It divides network communication into smaller parts to make learning it easier to understand. In the foll...

Advantages and disadvantages of link-state routing

Advantages and disadvantages of link-state routing 2.1.5  This page lists the advantages and disadvantages of link-state routing protocols. The following are advantages of link-state routing protocols:  Link-state protocols use cost metrics to choose paths through the network. The cost metric reflects the capacity of the links on those paths. Link-state protocols use triggered updates and LSA floods to immediately report changes in the network topology to all routers in the network. This leads to fast convergence times. Each router has a complete and synchronized picture of the network. Therefore, it is very difficult for routing loops to occur. Routers use the latest information to make the best routing decisions. The link-state database sizes can be minimized with careful network design. This leads to smaller Dijkstra calculations and faster convergence. Every router, at the very least, maps the topology of it...

Ports for services

Ports for services 10.2.2  Services running on hosts must have a port number assigned to them so communication can occur. A remote host attempting to connect to a service expects that service to use specific transport layer protocols and ports. Some ports, which are defined in RFC 1700, are known as the well-known ports. These ports are reserved in both TCP and UDP.  These well-known ports define applications that run above the transport layer protocols. For example, a server that runs FTP will use ports 20 and 21 to forward TCP connections from clients to its FTP application. This allows the server to determine which service a client requests. TCP and UDP use port numbers to determine the correct service to which requests are forwarded. The next page will discuss ports in greater detail.