Skip to main content

Windowing and window size

Windowing and window size 
10.1.4 The amount of data that needs to be transmitted is often too large to be sent in a single data segment. In this case, the data must be broken into smaller pieces to allow for proper data transmission. TCP is responsible for breaking data into segments. This can be compared to the way that small children are fed. Their food is cut into smaller pieces that their mouths can accommodate. Additionally, a device may not be able to receive data as quickly as the source can send it. The device may be busy with other tasks or the sender may be a more robust device.
Once the data is segmented, it must be transmitted to the destination device. One of the services provided by TCP is flow control, which regulates how much data is sent during a given transmission period. The process of flow control is known as windowing.
Window size determines the amount of data that can be transmitted at one time before the destination responds with an acknowledgment. After a host transmits the window-sized number of bytes, the host must receive an acknowledgment that the data has been received before it can send any more data. For example, if the window size is 1, each byte must be acknowledged before the next byte is sent. 
TCP utilizes windowing to dynamically determine transmission size. Devices negotiate a window size to allow a specific number of bytes to be transmitted before an acknowledgment. 
This process of dynamically varying the window size increases reliability. The window size can be varied based upon acknowledgments.
The Interactive Media Activity will help students understand the concept of windowing.
The next page describes TCP sequence numbers.

Comments

Popular posts from this blog

OSI layers / Peer-to-peer communications / TCP/IP model

OSI layers 2.3.4 This page discusses the seven layers of the OSI model. The OSI reference model is a framework that is used to understand how information travels throughout a network. The OSI reference model explains how packets travel through the various layers to another device on a network, even if the sender and destination have different types of network media. In the OSI reference model, there are seven numbered layers, each of which illustrates a particular network function. - Dividing the network into seven layers provides the following advantages: • It breaks network communication into smaller, more manageable parts. • It standardizes network components to allow multiple vendor development and support. • It allows different types of network hardware and software to communicate with each other. • It prevents changes in one layer from affecting other layers. • It divides network communication into smaller parts to make learning it easier to understand. In the foll...

Advantages and disadvantages of link-state routing

Advantages and disadvantages of link-state routing 2.1.5  This page lists the advantages and disadvantages of link-state routing protocols. The following are advantages of link-state routing protocols:  Link-state protocols use cost metrics to choose paths through the network. The cost metric reflects the capacity of the links on those paths. Link-state protocols use triggered updates and LSA floods to immediately report changes in the network topology to all routers in the network. This leads to fast convergence times. Each router has a complete and synchronized picture of the network. Therefore, it is very difficult for routing loops to occur. Routers use the latest information to make the best routing decisions. The link-state database sizes can be minimized with careful network design. This leads to smaller Dijkstra calculations and faster convergence. Every router, at the very least, maps the topology of it...

Ports for services

Ports for services 10.2.2  Services running on hosts must have a port number assigned to them so communication can occur. A remote host attempting to connect to a service expects that service to use specific transport layer protocols and ports. Some ports, which are defined in RFC 1700, are known as the well-known ports. These ports are reserved in both TCP and UDP.  These well-known ports define applications that run above the transport layer protocols. For example, a server that runs FTP will use ports 20 and 21 to forward TCP connections from clients to its FTP application. This allows the server to determine which service a client requests. TCP and UDP use port numbers to determine the correct service to which requests are forwarded. The next page will discuss ports in greater detail.