Skip to main content

Access Control List Fundamentals / Introduction to ACLs

Access Control List Fundamentals 
Introduction to ACLs
11.1.1 This page will explain what ACLs are and how they are used.
ACLs are lists of conditions used to test network traffic that tries to travel across a router interface. These lists tell the router what types of packets to accept or deny. Acceptance and denial can be based on specified conditions. ACLs enable management of traffic and secure access to and from a network.
ACLs can be created for all routed network protocols such as IP and Internetwork Packet Exchange (IPX). ACLs can be configured at the router to control access to a network or subnet.
To filter network traffic, ACLs determine if routed packets are forwarded or blocked at the router interfaces. The router examines each packet and will forward or discard it based on the conditions specified in the ACL. An ACL makes routing decisions based on source address, destination address, protocols, and upper-layer port numbers.
ACLs must be defined on a per protocol, per direction, or per port basis. To control traffic flow on an interface, an ACL must be defined for each protocol enabled on the interface. ACLs control traffic in one direction at a time on an interface. Two separate ACLs must be created to control inbound and outbound traffic. Every interface can have multiple protocols and directions defined. If the router has two interfaces configured for IP, AppleTalk, and IPX, 12 separate ACLs would be needed. There would be one ACL for each protocol, times two for each direction, times two for the number of ports.
ACLs can be used to perform the following tasks:
  • Limit network traffic and increase network performance. For example, ACLs that restrict video traffic could greatly reduce the network load and increase network performance.
  • Provide traffic flow control. ACLs can restrict the delivery of routing updates. If updates are not required because of network conditions, bandwidth is preserved.
  • Provide a basic level of security for network access. ACLs can allow one host to access a part of the network and prevent another host from accessing the same area. For example, Host A is allowed to access the Human Resources network and Host B is prevented from accessing it.
  • Decide which types of traffic are forwarded or blocked at the router interfaces. ACLs can permit e-mail traffic to be routed, but block all Telnet traffic.
  • Control which areas a client can access on a network.
  • Screen hosts to permit or deny access to a network segment. ACLs can be used to permit or deny a user to access file types such as FTP or HTTP.
If ACLs are not configured on the router, all packets that pass through the router will be permitted to access the entire network.
The next page will describe how ACLs work.

Comments

Popular posts from this blog

OSI layers / Peer-to-peer communications / TCP/IP model

OSI layers 2.3.4 This page discusses the seven layers of the OSI model. The OSI reference model is a framework that is used to understand how information travels throughout a network. The OSI reference model explains how packets travel through the various layers to another device on a network, even if the sender and destination have different types of network media. In the OSI reference model, there are seven numbered layers, each of which illustrates a particular network function. - Dividing the network into seven layers provides the following advantages: • It breaks network communication into smaller, more manageable parts. • It standardizes network components to allow multiple vendor development and support. • It allows different types of network hardware and software to communicate with each other. • It prevents changes in one layer from affecting other layers. • It divides network communication into smaller parts to make learning it easier to understand. In the foll...

Advantages and disadvantages of link-state routing

Advantages and disadvantages of link-state routing 2.1.5  This page lists the advantages and disadvantages of link-state routing protocols. The following are advantages of link-state routing protocols:  Link-state protocols use cost metrics to choose paths through the network. The cost metric reflects the capacity of the links on those paths. Link-state protocols use triggered updates and LSA floods to immediately report changes in the network topology to all routers in the network. This leads to fast convergence times. Each router has a complete and synchronized picture of the network. Therefore, it is very difficult for routing loops to occur. Routers use the latest information to make the best routing decisions. The link-state database sizes can be minimized with careful network design. This leads to smaller Dijkstra calculations and faster convergence. Every router, at the very least, maps the topology of it...

Ports for services

Ports for services 10.2.2  Services running on hosts must have a port number assigned to them so communication can occur. A remote host attempting to connect to a service expects that service to use specific transport layer protocols and ports. Some ports, which are defined in RFC 1700, are known as the well-known ports. These ports are reserved in both TCP and UDP.  These well-known ports define applications that run above the transport layer protocols. For example, a server that runs FTP will use ports 20 and 21 to forward TCP connections from clients to its FTP application. This allows the server to determine which service a client requests. TCP and UDP use port numbers to determine the correct service to which requests are forwarded. The next page will discuss ports in greater detail.