Skip to main content

TCP/IP description and configuration / Testing connectivity with ping



TCP/IP description and configuration

1.1.6 TCP/IP is a set of protocols or rules that have been developed to allow computers to share resources across a network. The operating system tools must be used to configure TCP/IP on a workstation. The process is very similar for Windows or Mac operating systems.

Testing connectivity with ping

1.1.7 Ping is a basic program that verifies a particular IP address exists and can accept requests. The computer acronym ping stands for Packet Internet or Inter-Network Groper. The name was contrived to match the submariners' term for the sound of a returned sonar pulse from an underwater object.


The ping command works by sending special Internet Protocol (IP) packets, called Internet Control Message Protocol (ICMP) Echo Request datagrams, to a specified destination. Each packet sent is a request for a reply. The output response for a ping contains the success ratio and round-trip time to the destination. From this information, it is possible to determine if there is connectivity to a destination. The ping command is used to test the NIC transmit and receive function, the TCP/IP configuration, and network connectivity. The following types of ping commands can be issued:

• ping 127.0.0.1 – This is a unique ping and is called an internal loopback test. It is used to verify the TCP/IP network configuration.

• ping IP address of host computer – A ping to a host PC verifies the TCP/IP address configuration for the local host and connectivity to the host.

• ping default-gateway IP address – A ping to the default gateway indicates if the router that connects the local network to other networks can be reached.

• ping remote destination IP address – A ping to a remote destination verifies connectivity to a remote host.

Comments

Popular posts from this blog

OSI layers / Peer-to-peer communications / TCP/IP model

OSI layers 2.3.4 This page discusses the seven layers of the OSI model. The OSI reference model is a framework that is used to understand how information travels throughout a network. The OSI reference model explains how packets travel through the various layers to another device on a network, even if the sender and destination have different types of network media. In the OSI reference model, there are seven numbered layers, each of which illustrates a particular network function. - Dividing the network into seven layers provides the following advantages: • It breaks network communication into smaller, more manageable parts. • It standardizes network components to allow multiple vendor development and support. • It allows different types of network hardware and software to communicate with each other. • It prevents changes in one layer from affecting other layers. • It divides network communication into smaller parts to make learning it easier to understand. In the foll...

Advantages and disadvantages of link-state routing

Advantages and disadvantages of link-state routing 2.1.5  This page lists the advantages and disadvantages of link-state routing protocols. The following are advantages of link-state routing protocols:  Link-state protocols use cost metrics to choose paths through the network. The cost metric reflects the capacity of the links on those paths. Link-state protocols use triggered updates and LSA floods to immediately report changes in the network topology to all routers in the network. This leads to fast convergence times. Each router has a complete and synchronized picture of the network. Therefore, it is very difficult for routing loops to occur. Routers use the latest information to make the best routing decisions. The link-state database sizes can be minimized with careful network design. This leads to smaller Dijkstra calculations and faster convergence. Every router, at the very least, maps the topology of it...

Ports for services

Ports for services 10.2.2  Services running on hosts must have a port number assigned to them so communication can occur. A remote host attempting to connect to a service expects that service to use specific transport layer protocols and ports. Some ports, which are defined in RFC 1700, are known as the well-known ports. These ports are reserved in both TCP and UDP.  These well-known ports define applications that run above the transport layer protocols. For example, a server that runs FTP will use ports 20 and 21 to forward TCP connections from clients to its FTP application. This allows the server to determine which service a client requests. TCP and UDP use port numbers to determine the correct service to which requests are forwarded. The next page will discuss ports in greater detail.