Skip to main content

Detailed encapsulation process



Detailed encapsulation process
2.3.7 This page describes the process of encapsulation.


All communications on a network originate at a source, and are sent to a destination. The information sent on a network is referred to as data or data packets. If one computer (host A) wants to send data to another computer (host B), the data must first be packaged through a process called encapsulation.

Encapsulation wraps data with the necessary protocol information before network transit. Therefore, as the data packet moves down through the layers of the OSI model, it receives headers, trailers, and other information.

To see how encapsulation occurs, examine the manner in which data travels through the layers as illustrated in Figure . Once the data is sent from the source, it travels through the application layer down through the other layers. The packaging and flow of the data that is exchanged goes through changes as the layers perform their services for end users. As illustrated in Figure , networks must perform the following five conversion steps in order to encapsulate data:

1. Build the data – As a user sends an e-mail message, its alphanumeric characters are converted to data that can travel across the internet work.

2. Package the data for end-to-end transport – The data is packaged for internet work transport. By using segments, the transport function ensures that the message hosts at both ends of the e-mail system can reliably communicate.

3. Add the network IP address to the header – The data is put into a packet or datagram that contains a packet header with source and destination logical addresses. These addresses help network devices send the packets across the network along a chosen path.

4. Add the data link layer header and trailer – Each network device must put the packet into a frame. The frame allows connection to the next directly-connected network device on the link. Each device in the chosen network path requires framing in order for it to connect to the next device.

5. Convert to bits for transmission – The frame must be converted into a pattern of 1s and 0s (bits) for transmission on the medium. A clocking function enables the devices to distinguish these bits as they travel across the medium. The medium on the physical internet work can vary along the path used. For example, the e-mail message can originate on a LAN, cross a campus backbone, and go out a WAN link until it reaches its destination on another remote LAN.

The Lab Activity will provide an in depth review of the OSI model.

The Interactive Media Activity requires students to complete an encapsulation process flowchart.

This page concludes this lesson. The next page will summarize the main points from the module.

Comments

Popular posts from this blog

OSI layers / Peer-to-peer communications / TCP/IP model

OSI layers 2.3.4 This page discusses the seven layers of the OSI model. The OSI reference model is a framework that is used to understand how information travels throughout a network. The OSI reference model explains how packets travel through the various layers to another device on a network, even if the sender and destination have different types of network media. In the OSI reference model, there are seven numbered layers, each of which illustrates a particular network function. - Dividing the network into seven layers provides the following advantages: • It breaks network communication into smaller, more manageable parts. • It standardizes network components to allow multiple vendor development and support. • It allows different types of network hardware and software to communicate with each other. • It prevents changes in one layer from affecting other layers. • It divides network communication into smaller parts to make learning it easier to understand. In the foll...

Advantages and disadvantages of link-state routing

Advantages and disadvantages of link-state routing 2.1.5  This page lists the advantages and disadvantages of link-state routing protocols. The following are advantages of link-state routing protocols:  Link-state protocols use cost metrics to choose paths through the network. The cost metric reflects the capacity of the links on those paths. Link-state protocols use triggered updates and LSA floods to immediately report changes in the network topology to all routers in the network. This leads to fast convergence times. Each router has a complete and synchronized picture of the network. Therefore, it is very difficult for routing loops to occur. Routers use the latest information to make the best routing decisions. The link-state database sizes can be minimized with careful network design. This leads to smaller Dijkstra calculations and faster convergence. Every router, at the very least, maps the topology of it...

Ports for services

Ports for services 10.2.2  Services running on hosts must have a port number assigned to them so communication can occur. A remote host attempting to connect to a service expects that service to use specific transport layer protocols and ports. Some ports, which are defined in RFC 1700, are known as the well-known ports. These ports are reserved in both TCP and UDP.  These well-known ports define applications that run above the transport layer protocols. For example, a server that runs FTP will use ports 20 and 21 to forward TCP connections from clients to its FTP application. This allows the server to determine which service a client requests. TCP and UDP use port numbers to determine the correct service to which requests are forwarded. The next page will discuss ports in greater detail.