Fast Ethernet architecture
7.1.9 This page describes the architecture of Fast Ethernet.
Fast Ethernet links generally consist of a connection between a station and a hub or switch. Hubs are considered multi-port repeaters and switches are considered multi-port bridges. These are subject to the 100-m (328 ft) UTP media distance limitation.
A Class I repeater may introduce up to 140 bit-times latency. Any repeater that changes between one Ethernet implementation and another is a Class I repeater. A Class II repeater is restricted to smaller timing delays, 92 bit times, because it immediately repeats the incoming signal to all other ports without a translation process. To achieve a smaller timing delay, Class II repeaters can only connect to segment types that use the same signaling technique.
As with 10-Mbps versions, it is possible to modify some of the architecture rules for 100-Mbps versions. Modification of the architecture rules is strongly discouraged for 100BASE-TX. 100BASE-TX cable between Class II repeaters may not exceed 5 m (16 ft). Links that operate in half duplex are not uncommon in Fast Ethernet. However, half duplex is undesirable because the signaling scheme is inherently full duplex.
Figure shows architecture configuration cable distances. 100BASE-TX links can have unrepeated distances up to 100 m. Switches have made this distance limitation less important. Most Fast Ethernet implementations are switched.
This page concludes this lesson. The next lesson will discuss Gigabit and 10-Gigabit Ethernet. The first page describes 1000-Mbps Ethernet standards.
1000-Mbps Ethernet
7.2.1 This page covers the 1000-Mbps Ethernet or Gigabit Ethernet standards. These standards specify both fiber and copper media for data transmissions. The 1000BASE-T standard, IEEE 802.3ab, uses Category 5, or higher, balanced copper cabling. The 1000BASE-X standard, IEEE 802.3z, specifies 1 Gbps full duplex over optical fiber.
1000BASE-TX, 1000BASE-SX, and 1000BASE-LX use the same timing parameters, as shown in Figure . They use a 1 ns, 0.000000001 of a second, or 1 billionth of a second bit time. The Gigabit Ethernet frame has the same format as is used for 10 and 100-Mbps Ethernet. Some implementations of Gigabit Ethernet may use different processes to convert frames to bits on the cable. Figure shows the Ethernet frame fields.
The differences between standard Ethernet, Fast Ethernet and Gigabit Ethernet occur at the physical layer. Due to the increased speeds of these newer standards, the shorter duration bit times require special considerations. Since the bits are introduced on the medium for a shorter duration and more often, timing is critical. This high-speed transmission requires higher frequencies. This causes the bits to be more susceptible to noise on copper media.
These issues require Gigabit Ethernet to use two separate encoding steps. Data transmission is more efficient when codes are used to represent the binary bit stream. The encoded data provides synchronization, efficient usage of bandwidth, and improved signal-to-noise ratio characteristics.
At the physical layer, the bit patterns from the MAC layer are converted into symbols. The symbols may also be control information such as start frame, end frame, and idle conditions on a link. The frame is coded into control symbols and data symbols to increase in network throughput.
Fiber-based Gigabit Ethernet, or 1000BASE-X, uses 8B/10B encoding, which is similar to the 4B/5B concept. This is followed by the simple nonreturn to zero (NRZ) line encoding of light on optical fiber. This encoding process is possible because the fiber medium can carry higher bandwidth signals.
The next page will discuss the 1000BASE-T standard.
Saturday, February 6, 2010
100BASE-TX / 100BASE-FX
100BASE-TX
7.1.7 This page will describe 100BASE-TX.
In 1995, 100BASE-TX was the standard, using Category 5 UTP cable, which became commercially successful.
The original coaxial Ethernet used half-duplex transmission so only one device could transmit at a time. In 1997, Ethernet was expanded to include a full-duplex capability that allowed more than one PC on a network to transmit at the same time. Switches replaced hubs in many networks. These switches had full-duplex capabilities and could handle Ethernet frames quickly.
100BASE-TX uses 4B/5B encoding, which is then scrambled and converted to Multi-Level Transmit (MLT-3) encoding. Figure shows four waveform examples. The top waveform has no transition in the center of the timing window. No transition indicates a binary zero. The second waveform shows a transition in the center of the timing window. A transition represents a binary one. The third waveform shows an alternating binary sequence. The fourth wavelength shows that signal changes indicate ones and horizontal lines indicate zeros.
Figure shows the pinout for a 100BASE-TX connection. Notice that the two separate transmit-receive paths exist. This is identical to the 10BASE-T configuration.
100BASE-TX carries 100 Mbps of traffic in half-duplex mode. In full-duplex mode, 100BASE-TX can exchange 200 Mbps of traffic. The concept of full duplex will become more important as Ethernet speeds increase.
100BASE-FX
7.1.8 This page covers 100BASE-FX.
When copper-based Fast Ethernet was introduced, a fiber version was also desired. A fiber version could be used for backbone applications, connections between floors, buildings where copper is less desirable, and also in high-noise environments. 100BASE-FX was introduced to satisfy this desire. However, 100BASE-FX was never adopted successfully. This was due to the introduction of Gigabit Ethernet copper and fiber standards. Gigabit Ethernet standards are now the dominant technology for backbone installations, high-speed cross-connects, and general infrastructure needs.
The timing, frame format, and transmission are the same in both versions of 100-Mbps Fast Ethernet. In Figure , the top waveform has no transition, which indicates a binary 0. In the second waveform, the transition in the center of the timing window indicates a binary 1. In the third waveform, there is an alternating binary sequence. In the third and fourth waveforms it is more obvious that no transition indicates a binary zero and the presence of a transition is a binary one.
Figure summarizes a 100BASE-FX link and pinouts. A fiber pair with either ST or SC connectors is most commonly used.
The separate Transmit (Tx) and Receive (Rx) paths in 100BASE-FX optical fiber allow for 200-Mbps transmission.
The next page will explain the Fast Ethernet architecture.
7.1.7 This page will describe 100BASE-TX.
In 1995, 100BASE-TX was the standard, using Category 5 UTP cable, which became commercially successful.
The original coaxial Ethernet used half-duplex transmission so only one device could transmit at a time. In 1997, Ethernet was expanded to include a full-duplex capability that allowed more than one PC on a network to transmit at the same time. Switches replaced hubs in many networks. These switches had full-duplex capabilities and could handle Ethernet frames quickly.
100BASE-TX uses 4B/5B encoding, which is then scrambled and converted to Multi-Level Transmit (MLT-3) encoding. Figure shows four waveform examples. The top waveform has no transition in the center of the timing window. No transition indicates a binary zero. The second waveform shows a transition in the center of the timing window. A transition represents a binary one. The third waveform shows an alternating binary sequence. The fourth wavelength shows that signal changes indicate ones and horizontal lines indicate zeros.
Figure shows the pinout for a 100BASE-TX connection. Notice that the two separate transmit-receive paths exist. This is identical to the 10BASE-T configuration.
100BASE-TX carries 100 Mbps of traffic in half-duplex mode. In full-duplex mode, 100BASE-TX can exchange 200 Mbps of traffic. The concept of full duplex will become more important as Ethernet speeds increase.
100BASE-FX
7.1.8 This page covers 100BASE-FX.
When copper-based Fast Ethernet was introduced, a fiber version was also desired. A fiber version could be used for backbone applications, connections between floors, buildings where copper is less desirable, and also in high-noise environments. 100BASE-FX was introduced to satisfy this desire. However, 100BASE-FX was never adopted successfully. This was due to the introduction of Gigabit Ethernet copper and fiber standards. Gigabit Ethernet standards are now the dominant technology for backbone installations, high-speed cross-connects, and general infrastructure needs.
The timing, frame format, and transmission are the same in both versions of 100-Mbps Fast Ethernet. In Figure , the top waveform has no transition, which indicates a binary 0. In the second waveform, the transition in the center of the timing window indicates a binary 1. In the third waveform, there is an alternating binary sequence. In the third and fourth waveforms it is more obvious that no transition indicates a binary zero and the presence of a transition is a binary one.
Figure summarizes a 100BASE-FX link and pinouts. A fiber pair with either ST or SC connectors is most commonly used.
The separate Transmit (Tx) and Receive (Rx) paths in 100BASE-FX optical fiber allow for 200-Mbps transmission.
The next page will explain the Fast Ethernet architecture.
10BASE-T wiring and architecture / 100-Mbps Ethernet
10BASE-T wiring and architecture
7.1.5 This page explains the wiring and architecture of 10BASE-T.
A 10BASE-T link generally connects a station to a hub or switch. Hubs are multi-port repeaters and count toward the limit on repeaters between distant stations. Hubs do not divide network segments into separate collision domains. Bridges and switches divide segments into separate collision domains. The maximum distance between bridges and switches is based on media limitations.
Although hubs may be linked, it is best to avoid this arrangement. A network with linked hubs may exceed the limit for maximum delay between stations. Multiple hubs should be arranged in hierarchical order like a tree structure. Performance is better if fewer repeaters are used between stations.
An architectural example is shown in Figure . The distance from one end of the network to the other places the architecture at its limit. The most important aspect to consider is how to keep the delay between distant stations to a minimum, regardless of the architecture and media types involved. A shorter maximum delay will provide better overall performance.
10BASE-T links can have unrepeated distances of up to 100 m (328 ft). While this may seem like a long distance, it is typically maximized when wiring an actual building. Hubs can solve the distance issue but will allow collisions to propagate. The widespread introduction of switches has made the distance limitation less important. If workstations are located within 100 m (328 ft) of a switch, the 100-m distance starts over at the switch.
The next page will describe Fast Ethernet.
100-Mbps Ethernet
7.1.6 This page will discuss 100-Mbps Ethernet, which is also known as Fast Ethernet. The two technologies that have become important are 100BASE-TX, which is a copper UTP medium and 100BASE-FX, which is a multimode optical fiber medium.
Three characteristics common to 100BASE-TX and 100BASE-FX are the timing parameters, the frame format, and parts of the transmission process. 100BASE-TX and 100BASE-FX both share timing parameters. Note that one bit time at 100-Mbps = 10 ns = .01 microseconds = 1 100-millionth of a second.
The 100-Mbps frame format is the same as the 10-Mbps frame.
Fast Ethernet is ten times faster than 10BASE-T. The bits that are sent are shorter in duration and occur more frequently. These higher frequency signals are more susceptible to noise. In response to these issues, two separate encoding steps are used by 100-Mbps Ethernet. The first part of the encoding uses a technique called 4B/5B, the second part of the encoding is the actual line encoding specific to copper or fiber.
The next page will discuss the 100BASE-TX standard.
7.1.5 This page explains the wiring and architecture of 10BASE-T.
A 10BASE-T link generally connects a station to a hub or switch. Hubs are multi-port repeaters and count toward the limit on repeaters between distant stations. Hubs do not divide network segments into separate collision domains. Bridges and switches divide segments into separate collision domains. The maximum distance between bridges and switches is based on media limitations.
Although hubs may be linked, it is best to avoid this arrangement. A network with linked hubs may exceed the limit for maximum delay between stations. Multiple hubs should be arranged in hierarchical order like a tree structure. Performance is better if fewer repeaters are used between stations.
An architectural example is shown in Figure . The distance from one end of the network to the other places the architecture at its limit. The most important aspect to consider is how to keep the delay between distant stations to a minimum, regardless of the architecture and media types involved. A shorter maximum delay will provide better overall performance.
10BASE-T links can have unrepeated distances of up to 100 m (328 ft). While this may seem like a long distance, it is typically maximized when wiring an actual building. Hubs can solve the distance issue but will allow collisions to propagate. The widespread introduction of switches has made the distance limitation less important. If workstations are located within 100 m (328 ft) of a switch, the 100-m distance starts over at the switch.
The next page will describe Fast Ethernet.
100-Mbps Ethernet
7.1.6 This page will discuss 100-Mbps Ethernet, which is also known as Fast Ethernet. The two technologies that have become important are 100BASE-TX, which is a copper UTP medium and 100BASE-FX, which is a multimode optical fiber medium.
Three characteristics common to 100BASE-TX and 100BASE-FX are the timing parameters, the frame format, and parts of the transmission process. 100BASE-TX and 100BASE-FX both share timing parameters. Note that one bit time at 100-Mbps = 10 ns = .01 microseconds = 1 100-millionth of a second.
The 100-Mbps frame format is the same as the 10-Mbps frame.
Fast Ethernet is ten times faster than 10BASE-T. The bits that are sent are shorter in duration and occur more frequently. These higher frequency signals are more susceptible to noise. In response to these issues, two separate encoding steps are used by 100-Mbps Ethernet. The first part of the encoding uses a technique called 4B/5B, the second part of the encoding is the actual line encoding specific to copper or fiber.
The next page will discuss the 100BASE-TX standard.
10BASE2
10BASE2
7.1.3 This page covers 10BASE2, which was introduced in 1985.
Installation was easier because of its smaller size, lighter weight, and greater flexibility. 10BASE2 still exists in legacy networks. Like 10BASE5, it is no longer recommended for network installations. It has a low cost and does not require hubs.
10BASE2 also uses Manchester encoding. Computers on a 10BASE2 LAN are linked together by an unbroken series of coaxial cable lengths. These lengths are attached to a T-shaped connector on the NIC with BNC connectors.
10BASE2 has a stranded central conductor. Each of the maximum five segments of thin coaxial cable may be up to 185 m (607 ft) long and each station is connected directly to the BNC T-shaped connector on the coaxial cable.
Only one station can transmit at a time or a collision will occur. 10BASE2 also uses half-duplex. The maximum transmission rate of 10BASE2 is 10 Mbps.
There may be up to 30 stations on a 10BASE2 segment. Only three out of five consecutive segments between any two stations can be populated.
The next page will discuss 10BASE-T.
10BASE-T
7.1.4 This page covers 10BASE-T, which was introduced in 1990.
10BASE-T used cheaper and easier to install Category 3 UTP copper cable instead of coax cable. The cable plugged into a central connection device that contained the shared bus. This device was a hub. It was at the center of a set of cables that radiated out to the PCs like the spokes on a wheel. This is referred to as a star topology. As additional stars were added and the cable distances grew, this formed an extended star topology. Originally 10BASE-T was a half-duplex protocol, but full-duplex features were added later. The explosion in the popularity of Ethernet in the mid-to-late 1990s was when Ethernet came to dominate LAN technology.
10BASE-T also uses Manchester encoding. A 10BASE-T UTP cable has a solid conductor for each wire. The maximum cable length is 90 m (295 ft). UTP cable uses eight-pin RJ-45 connectors. Though Category 3 cable is adequate for 10BASE-T networks, new cable installations should be made with Category 5e or better. All four pairs of wires should be used either with the T568-A or T568-B cable pinout arrangement. This type of cable installation supports the use of multiple protocols without the need to rewire. Figure shows the pinout arrangement for a 10BASE-T connection. The pair that transmits data on one device is connected to the pair that receives data on the other device.
Half duplex or full duplex is a configuration choice. 10BASE-T carries 10 Mbps of traffic in half-duplex mode and 20 Mbps in full-duplex mode.
The next page describes the wiring and architecture of 10BASE-T.
7.1.3 This page covers 10BASE2, which was introduced in 1985.
Installation was easier because of its smaller size, lighter weight, and greater flexibility. 10BASE2 still exists in legacy networks. Like 10BASE5, it is no longer recommended for network installations. It has a low cost and does not require hubs.
10BASE2 also uses Manchester encoding. Computers on a 10BASE2 LAN are linked together by an unbroken series of coaxial cable lengths. These lengths are attached to a T-shaped connector on the NIC with BNC connectors.
10BASE2 has a stranded central conductor. Each of the maximum five segments of thin coaxial cable may be up to 185 m (607 ft) long and each station is connected directly to the BNC T-shaped connector on the coaxial cable.
Only one station can transmit at a time or a collision will occur. 10BASE2 also uses half-duplex. The maximum transmission rate of 10BASE2 is 10 Mbps.
There may be up to 30 stations on a 10BASE2 segment. Only three out of five consecutive segments between any two stations can be populated.
The next page will discuss 10BASE-T.
10BASE-T
7.1.4 This page covers 10BASE-T, which was introduced in 1990.
10BASE-T used cheaper and easier to install Category 3 UTP copper cable instead of coax cable. The cable plugged into a central connection device that contained the shared bus. This device was a hub. It was at the center of a set of cables that radiated out to the PCs like the spokes on a wheel. This is referred to as a star topology. As additional stars were added and the cable distances grew, this formed an extended star topology. Originally 10BASE-T was a half-duplex protocol, but full-duplex features were added later. The explosion in the popularity of Ethernet in the mid-to-late 1990s was when Ethernet came to dominate LAN technology.
10BASE-T also uses Manchester encoding. A 10BASE-T UTP cable has a solid conductor for each wire. The maximum cable length is 90 m (295 ft). UTP cable uses eight-pin RJ-45 connectors. Though Category 3 cable is adequate for 10BASE-T networks, new cable installations should be made with Category 5e or better. All four pairs of wires should be used either with the T568-A or T568-B cable pinout arrangement. This type of cable installation supports the use of multiple protocols without the need to rewire. Figure shows the pinout arrangement for a 10BASE-T connection. The pair that transmits data on one device is connected to the pair that receives data on the other device.
Half duplex or full duplex is a configuration choice. 10BASE-T carries 10 Mbps of traffic in half-duplex mode and 20 Mbps in full-duplex mode.
The next page describes the wiring and architecture of 10BASE-T.
Tuesday, January 26, 2010
10BASE5
10BASE5
7.1.2 This page will discuss the original 1980 Ethernet product, which is 10BASE5. 10BASE5 transmitted 10 Mbps over a single think coaxial cable bus.
10BASE5 is important because it was the first medium used for Ethernet. 10BASE5 was part of the original 802.3 standard. The primary benefit of 10BASE5 was length. 10BASE5 may be found in legacy installations. It is not recommended for new installations. 10BASE5 systems are inexpensive and require no configuration. Two disadvantages are that basic components like NICs are very difficult to find and it is sensitive to signal reflections on the cable. 10BASE5 systems also represent a single point of failure.
10BASE5 uses Manchester encoding. It has a solid central conductor. Each segment of thick coax may be up to 500 m (1640.4 ft) in length. The cable is large, heavy, and difficult to install. However, the distance limitations were favorable and this prolonged its use in certain applications.
When the medium is a single coaxial cable, only one station can transmit at a time or a collision will occur. Therefore, 10BASE5 only runs in half-duplex with a maximum transmission rate of 10 Mbps.
Figure illustrates a configuration for an end-to-end collision domain with the maximum number of segments and repeaters. Remember that only three segments can have stations connected to them. The other two repeated segments are used to extend the network.
The next page will discuss 10BASE2.
7.1.2 This page will discuss the original 1980 Ethernet product, which is 10BASE5. 10BASE5 transmitted 10 Mbps over a single think coaxial cable bus.
10BASE5 is important because it was the first medium used for Ethernet. 10BASE5 was part of the original 802.3 standard. The primary benefit of 10BASE5 was length. 10BASE5 may be found in legacy installations. It is not recommended for new installations. 10BASE5 systems are inexpensive and require no configuration. Two disadvantages are that basic components like NICs are very difficult to find and it is sensitive to signal reflections on the cable. 10BASE5 systems also represent a single point of failure.
10BASE5 uses Manchester encoding. It has a solid central conductor. Each segment of thick coax may be up to 500 m (1640.4 ft) in length. The cable is large, heavy, and difficult to install. However, the distance limitations were favorable and this prolonged its use in certain applications.
When the medium is a single coaxial cable, only one station can transmit at a time or a collision will occur. Therefore, 10BASE5 only runs in half-duplex with a maximum transmission rate of 10 Mbps.
Figure illustrates a configuration for an end-to-end collision domain with the maximum number of segments and repeaters. Remember that only three segments can have stations connected to them. The other two repeated segments are used to extend the network.
The next page will discuss 10BASE2.
10-Mbps and 100-Mbps Ethernet
10-Mbps Ethernet
7.1.1 This page will discuss 10-Mbps Ethernet technologies.
10BASE5, 10BASE2, and 10BASE-T Ethernet are considered Legacy Ethernet. The four common features of Legacy Ethernet are timing parameters, the frame format, transmission processes, and a basic design rule.
Figure displays the parameters for 10-Mbps Ethernet operation. 10-Mbps Ethernet and slower versions are asynchronous. Each receiving station uses eight octets of timing information to synchronize its receive circuit to the incoming data. 10BASE5, 10BASE2, and 10BASE-T all share the same timing parameters. For example, 1 bit time at 10 Mbps = 100 nanoseconds (ns) = 0.1 microseconds = 1 10-millionth of a second. This means that on a 10-Mbps Ethernet network, 1 bit at the MAC sublayer requires 100 ns to transmit.
For all speeds of Ethernet transmission 1000 Mbps or slower, transmission can be no slower than the slot time. Slot time is just longer than the time it theoretically can take to go from one extreme end of the largest legal Ethernet collision domain to the other extreme end, collide with another transmission at the last possible instant, and then have the collision fragments return to the sending station to be detected.
10BASE5, 10BASE2, and 10BASE-T also have a common frame format.
The Legacy Ethernet transmission process is identical until the lower part of the OSI physical layer. As the frame passes from the MAC sublayer to the physical layer, other processes occur before the bits move from the physical layer onto the medium. One important process is the signal quality error (SQE) signal. The SQE is a transmission sent by a transceiver back to the controller to let the controller know whether the collision circuitry is functional. The SQE is also called a heartbeat. The SQE signal is designed to fix the problem in earlier versions of Ethernet where a host does not know if a transceiver is connected. SQE is always used in half-duplex. SQE can be used in full-duplex operation but is not required. SQE is active in the following instances:
• Within 4 to 8 microseconds after a normal transmission to indicate that the outbound frame was successfully transmitted
• Whenever there is a collision on the medium
• Whenever there is an improper signal on the medium, such as jabber, or reflections that result from a cable short
• Whenever a transmission has been interrupted
All 10-Mbps forms of Ethernet take octets received from the MAC sublayer and perform a process called line encoding. Line encoding describes how the bits are actually signaled on the wire. The simplest encodings have undesirable timing and electrical characteristics. Therefore, line codes have been designed with desirable transmission properties. This form of encoding used in 10-Mbps systems is called Manchester encoding.
Manchester encoding uses the transition in the middle of the timing window to determine the binary value for that bit period. In Figure , the top waveform moves to a lower position so it is interpreted as a binary zero. The second waveform moves to a higher position and is interpreted as a binary one. The third waveform has an alternating binary sequence. When binary data alternates, there is no need to return to the previous voltage level before the next bit period. The wave forms in the graphic show that the binary bit values are determined based on the direction of change in a bit period. The voltage levels at the start or end of any bit period are not used to determine binary values.
Legacy Ethernet has common architectural features. Networks usually contain multiple types of media. The standard ensures that interoperability is maintained. The overall architectural design is most important in mixed-media networks. It becomes easier to violate maximum delay limits as the network grows. The timing limits are based on the following types of parameters:
• Cable length and propagation delay
• Delay of repeaters
• Delay of transceivers
• Interframe gap shrinkage
• Delays within the station
10-Mbps Ethernet operates within the timing limits for a series of up to five segments separated by up to four repeaters. This is known as the 5-4-3 rule. No more than four repeaters can be used in series between any two stations. There can also be no more than three populated segments between any two stations.
The next page will describe 10BASE5.
7.1.1 This page will discuss 10-Mbps Ethernet technologies.
10BASE5, 10BASE2, and 10BASE-T Ethernet are considered Legacy Ethernet. The four common features of Legacy Ethernet are timing parameters, the frame format, transmission processes, and a basic design rule.
Figure displays the parameters for 10-Mbps Ethernet operation. 10-Mbps Ethernet and slower versions are asynchronous. Each receiving station uses eight octets of timing information to synchronize its receive circuit to the incoming data. 10BASE5, 10BASE2, and 10BASE-T all share the same timing parameters. For example, 1 bit time at 10 Mbps = 100 nanoseconds (ns) = 0.1 microseconds = 1 10-millionth of a second. This means that on a 10-Mbps Ethernet network, 1 bit at the MAC sublayer requires 100 ns to transmit.
For all speeds of Ethernet transmission 1000 Mbps or slower, transmission can be no slower than the slot time. Slot time is just longer than the time it theoretically can take to go from one extreme end of the largest legal Ethernet collision domain to the other extreme end, collide with another transmission at the last possible instant, and then have the collision fragments return to the sending station to be detected.
10BASE5, 10BASE2, and 10BASE-T also have a common frame format.
The Legacy Ethernet transmission process is identical until the lower part of the OSI physical layer. As the frame passes from the MAC sublayer to the physical layer, other processes occur before the bits move from the physical layer onto the medium. One important process is the signal quality error (SQE) signal. The SQE is a transmission sent by a transceiver back to the controller to let the controller know whether the collision circuitry is functional. The SQE is also called a heartbeat. The SQE signal is designed to fix the problem in earlier versions of Ethernet where a host does not know if a transceiver is connected. SQE is always used in half-duplex. SQE can be used in full-duplex operation but is not required. SQE is active in the following instances:
• Within 4 to 8 microseconds after a normal transmission to indicate that the outbound frame was successfully transmitted
• Whenever there is a collision on the medium
• Whenever there is an improper signal on the medium, such as jabber, or reflections that result from a cable short
• Whenever a transmission has been interrupted
All 10-Mbps forms of Ethernet take octets received from the MAC sublayer and perform a process called line encoding. Line encoding describes how the bits are actually signaled on the wire. The simplest encodings have undesirable timing and electrical characteristics. Therefore, line codes have been designed with desirable transmission properties. This form of encoding used in 10-Mbps systems is called Manchester encoding.
Manchester encoding uses the transition in the middle of the timing window to determine the binary value for that bit period. In Figure , the top waveform moves to a lower position so it is interpreted as a binary zero. The second waveform moves to a higher position and is interpreted as a binary one. The third waveform has an alternating binary sequence. When binary data alternates, there is no need to return to the previous voltage level before the next bit period. The wave forms in the graphic show that the binary bit values are determined based on the direction of change in a bit period. The voltage levels at the start or end of any bit period are not used to determine binary values.
Legacy Ethernet has common architectural features. Networks usually contain multiple types of media. The standard ensures that interoperability is maintained. The overall architectural design is most important in mixed-media networks. It becomes easier to violate maximum delay limits as the network grows. The timing limits are based on the following types of parameters:
• Cable length and propagation delay
• Delay of repeaters
• Delay of transceivers
• Interframe gap shrinkage
• Delays within the station
10-Mbps Ethernet operates within the timing limits for a series of up to five segments separated by up to four repeaters. This is known as the 5-4-3 rule. No more than four repeaters can be used in series between any two stations. There can also be no more than three populated segments between any two stations.
The next page will describe 10BASE5.
Module 7: Ethernet Technologies
Overview
Ethernet has been the most successful LAN technology mainly because of how easy it is to implement. Ethernet has also been successful because it is a flexible technology that has evolved as needs and media capabilities have changed. This module will provide details about the most important types of Ethernet. The goal is to help students understand what is common to all forms of Ethernet.
Changes in Ethernet have resulted in major improvements over the 10-Mbps Ethernet of the early 1980s. The 10-Mbps Ethernet standard remained virtually unchanged until 1995 when IEEE announced a standard for a 100-Mbps Fast Ethernet. In recent years, an even more rapid growth in media speed has moved the transition from Fast Ethernet to Gigabit Ethernet. The standards for Gigabit Ethernet emerged in only three years. A faster Ethernet version called 10-Gigabit Ethernet is now widely available and faster versions will be developed.
MAC addresses, CSMA/CD, and the frame format have not been changed from earlier versions of Ethernet. However, other aspects of the MAC sublayer, physical layer, and medium have changed. Copper-based NICs capable of 10, 100, or 1000 Mbps are now common. Gigabit switch and router ports are becoming the standard for wiring closets. Optical fiber to support Gigabit Ethernet is considered a standard for backbone cables in most new installations.
This module covers some of the objectives for the CCNA 640-801, INTRO 640-821, and ICND 640-811 exams.
Students who complete this module should be able to perform the following tasks:
• Describe the differences and similarities among 10BASE5, 10BASE2, and 10BASE-T Ethernet
• Define Manchester encoding
• List the factors that affect Ethernet timing limits
• List 10BASE-T wiring parameters
• Describe the key characteristics and varieties of 100-Mbps Ethernet
• Describe the evolution of Ethernet
• Explain the MAC methods, frame formats, and transmission process of Gigabit Ethernet
• Describe the uses of specific media and encoding with Gigabit Ethernet
• Identify the pinouts and wiring typical to the various implementations of Gigabit Ethernet
• Describe the similarities and differences between Gigabit and 10-Gigabit Ethernet
• Describe the basic architectural considerations of Gigabit and 10-Gigabit Ethernet
Ethernet has been the most successful LAN technology mainly because of how easy it is to implement. Ethernet has also been successful because it is a flexible technology that has evolved as needs and media capabilities have changed. This module will provide details about the most important types of Ethernet. The goal is to help students understand what is common to all forms of Ethernet.
Changes in Ethernet have resulted in major improvements over the 10-Mbps Ethernet of the early 1980s. The 10-Mbps Ethernet standard remained virtually unchanged until 1995 when IEEE announced a standard for a 100-Mbps Fast Ethernet. In recent years, an even more rapid growth in media speed has moved the transition from Fast Ethernet to Gigabit Ethernet. The standards for Gigabit Ethernet emerged in only three years. A faster Ethernet version called 10-Gigabit Ethernet is now widely available and faster versions will be developed.
MAC addresses, CSMA/CD, and the frame format have not been changed from earlier versions of Ethernet. However, other aspects of the MAC sublayer, physical layer, and medium have changed. Copper-based NICs capable of 10, 100, or 1000 Mbps are now common. Gigabit switch and router ports are becoming the standard for wiring closets. Optical fiber to support Gigabit Ethernet is considered a standard for backbone cables in most new installations.
This module covers some of the objectives for the CCNA 640-801, INTRO 640-821, and ICND 640-811 exams.
Students who complete this module should be able to perform the following tasks:
• Describe the differences and similarities among 10BASE5, 10BASE2, and 10BASE-T Ethernet
• Define Manchester encoding
• List the factors that affect Ethernet timing limits
• List 10BASE-T wiring parameters
• Describe the key characteristics and varieties of 100-Mbps Ethernet
• Describe the evolution of Ethernet
• Explain the MAC methods, frame formats, and transmission process of Gigabit Ethernet
• Describe the uses of specific media and encoding with Gigabit Ethernet
• Identify the pinouts and wiring typical to the various implementations of Gigabit Ethernet
• Describe the similarities and differences between Gigabit and 10-Gigabit Ethernet
• Describe the basic architectural considerations of Gigabit and 10-Gigabit Ethernet
Subscribe to:
Posts (Atom)