Wednesday, November 18, 2009

Digital versus analog / Using layers to analyze problems in a flow of materials


Digital versus analog
This page will explain the differences between analog and digital signals.


2.2.7 Radio, television, and telephone transmissions have, until recently, been sent through the air and over wires using electromagnetic waves. These waves are called analog because they have the same shapes as the light and sound waves produced by the transmitters. As light and sound waves change size and shape, the electrical signal that carries the transmission changes proportionately. In other words, the electromagnetic waves are analogous to the light and sound waves.

Analog bandwidth is measured by how much of the electromagnetic spectrum is occupied by each signal. The basic unit of analog bandwidth is hertz (Hz), or cycles per second. Typically, multiples of this basic unit of analog bandwidth are used, just as with digital bandwidth. Units of measurement that are commonly seen are kilohertz (KHz), megahertz (MHz), and gigahertz (GHz). These are the units used to describe the frequency of cordless telephones, which usually operate at either 900 MHz or 2.4 GHz. These are also the units used to describe the frequencies of 802.11a and 802.11b wireless networks, which operate at 5 GHz and 2.4 GHz.

While analog signals are capable of carrying a variety of information, they have some significant disadvantages in comparison to digital transmissions. The analog video signal that requires a wide frequency range for transmission cannot be squeezed into a smaller band. Therefore, if the necessary analog bandwidth is not available, the signal cannot be sent.

In digital signaling all information is sent as bits, regardless of the kind of information it is. Voice, video, and data all become streams of bits when they are prepared for transmission over digital media. This type of transmission gives digital bandwidth an important advantage over analog bandwidth. Unlimited amounts of information can be sent over the smallest or lowest bandwidth digital channel. Regardless of how long it takes for the digital information to arrive at its destination and be reassembled, it can be viewed, listened to, read, or processed in its original form.

It is important to understand the differences and similarities between digital and analog bandwidth. Both types of bandwidth are regularly encountered in the field of information technology. However, because this course is concerned primarily with digital networking, the term ‘bandwidth’ will refer to digital bandwidth.

This page concludes this lesson. The next lesson will discuss networking models. The first page will discuss the concept of layers.


Using layers to analyze problems in a flow of materials
2.3.1 This page explains how layers are used to describe communications between computers.


The concept of layers is used to describe communication from one computer to another. Figure shows a set of questions that are related to flow, which is defined as the motion through a system of either physical or logical objects. These questions show how the concept of layers helps describe the details of the flow process. This process could be any kind of flow, from the flow of traffic on a highway system to the flow of data through a network. Figure shows several examples of flow and ways that the flow process can be broken down into details or layers.

A conversation between two people provides a good opportunity to use a layered approach to analyze information flow. In a conversation, each person wishing to communicate begins by creating an idea. Then a decision is made on how to properly communicate the idea. For example, a person could decide to speak, sing or shout, and what language to use. Finally the idea is delivered. For example, the person creates the sound which carries the message.

This process can be broken into separate layers that may be applied to all conversations. The top layer is the idea that will be communicated. The middle layer is the decision on how the idea is to be communicated. The bottom layer is the creation of sound to carry the communication.

The same method of layering explains how a computer network distributes information from a source to a destination. When computers send information through a network, all communications originate at a source then travel to a destination.

The information that travels on a network is generally referred to as data or a packet. A packet is a logically grouped unit of information that moves between computer systems. As the data passes between layers, each layer adds additional information that enables effective communication with the corresponding layer on the other computer.

The OSI and TCP/IP models have layers that explain how data is communicated from one computer to another. The models differ in the number and function of the layers. However, each model can be used to help describe and provide details about the flow of information from a source to a destination.

The next page will explain how layers are used to describe data communication.

Throughput / Data transfer calculation


Throughput


2.2.5 Bandwidth is the measure of the amount of information that can move through the network in a given period of time. Therefore, the amount of available bandwidth is a critical part of the specification of the network. A typical LAN might be built to provide 100 Mbps to every desktop workstation, but this does not mean that each user is actually able to move 100 megabits of data through the network for every second of use. This would be true only under the most ideal circumstances.

Throughput refers to actual measured bandwidth, at a specific time of day, using specific Internet routes, and while a specific set of data is transmitted on the network. Unfortunately, for many reasons, throughput is often far less than the maximum possible digital bandwidth of the medium that is being used. The following are some of the factors that determine throughput:

• Internetworking devices
• Type of data being transferred
• Network topology
• Number of users on the network
• User computer
• Server computer
• Power conditions

The theoretical bandwidth of a network is an important consideration in network design, because the network bandwidth will never be greater than the limits imposed by the chosen media and networking technologies. However, it is just as important for a network designer and administrator to consider the factors that may affect actual throughput. By measuring throughput on a regular basis, a network administrator will be aware of changes in network performance and changes in the needs of network users. The network can then be adjusted accordingly.

The next page explains data transfer calculation.


Data transfer calculation


2.2.6 Network designers and administrators are often called upon to make decisions regarding bandwidth. One decision might be whether to increase the size of the WAN connection to accommodate a new database. Another decision might be whether the current LAN backbone is of sufficient bandwidth for a streaming-video training program. The answers to problems like these are not always easy to find, but one place to start is with a simple data transfer calculation.

Using the formula transfer time = size of file / bandwidth (T=S/BW) allows a network administrator to estimate several of the important components of network performance. If the typical file size for a given application is known, dividing the file size by the network bandwidth yields an estimate of the fastest time that the file can be transferred.

Two important points should be considered when doing this calculation.

• The result is an estimate only, because the file size does not include any overhead added by encapsulation.

• The result is likely to be a best-case transfer time, because available bandwidth is almost never at the theoretical maximum for the network type. A more accurate estimate can be attained if throughput is substituted for bandwidth in the equation.

Although the data transfer calculation is quite simple, one must be careful to use the same units throughout the equation. In other words, if the bandwidth is measured in megabits per second (Mbps), the file size must be in megabits (Mb), not megabytes (MB). Since file sizes are typically given in megabytes, it may be necessary to multiply the number of megabytes by eight to convert to megabits.

Try to answer the following question, using the formula T=S/BW. Be sure to convert units of measurement as necessary.

Would it take less time to send the contents of a floppy disk full of data (1.44 MB) over an ISDN line, or to send the contents of a ten GB hard drive full of data over an OC-48 line?

The next page will compare analog and digital signals.

Importance of bandwidth / The Desktop / Measurement / Limitations

Importance of bandwidth

2.2.1 Bandwidth is defined as the amount of information that can flow through a network connection in a given period of time. It is important to understand the concept of bandwidth for the following reasons.

Bandwidth is finite. Regardless of the media used to build a network, there are limits on the network capacity to carry information. Bandwidth is limited by the laws of physics and by the technologies used to place information on the media. For example, the bandwidth of a conventional modem is limited to about 56 kbps by both the physical properties of twisted-pair phone wires and by modem technology. DSL uses the same twisted-pair phone wires. However, DSL provides much more bandwidth than conventional modems. So, even the limits imposed by the laws of physics are sometimes difficult to define. Optical fiber has the physical potential to provide virtually limitless bandwidth. Even so, the bandwidth of optical fiber cannot be fully realized until technologies are developed to take full advantage of its potential.

Bandwidth is not free. It is possible to buy equipment for a LAN that will provide nearly unlimited bandwidth over a long period of time. For WAN connections, it is usually necessary to buy bandwidth from a service provider. In either case, individual users and businesses can save a lot of money if they understand bandwidth and how the demand will change over time. A network manager needs to make the right decisions about the kinds of equipment and services to buy.

Bandwidth is an important factor that is used to analyze network performance, design new networks, and understand the Internet. A networking professional must understand the tremendous impact of bandwidth and throughput on network performance and design. Information flows as a string of bits from computer to computer throughout the world. These bits represent massive amounts of information flowing back and forth across the globe in seconds or less.

The demand for bandwidth continues to grow. As soon as new network technologies and infrastructures are built to provide greater bandwidth, new applications are created to take advantage of the greater capacity. The delivery of rich media content such as streaming video and audio over a network requires tremendous amounts of bandwidth. IP telephony systems are now commonly installed in place of traditional voice systems, which further adds to the need for bandwidth. The successful networking professional must anticipate the need for increased bandwidth and act accordingly.

The next page will describe some analogies that can be used to understand bandwidth.

This page will present two analogies that may make it easier to visualize bandwidth in a network.

The desktop

2.2.2 Bandwidth has been defined as the amount of information that can flow through a network in a given time. The idea that information flows suggests two analogies that may make it easier to visualize bandwidth in a network.

Bandwidth is like the width of a pipe. A network of pipes brings fresh water to homes and businesses and carries waste water away. This water network is made up of pipes of different diameters. The main water pipes of a city may be 2 meters in diameter, while the pipe to a kitchen faucet may have a diameter of only 2 cm. The width of the pipe determines the water-carrying capacity of the pipe. Therefore, the water is like the data, and the pipe width is like the bandwidth. Many networking experts say that they need to put in bigger pipes when they wish to add more information-carrying capacity.

Bandwidth is like the number of lanes on a highway. A network of roads serves every city or town. Large highways with many traffic lanes are joined by smaller roads with fewer traffic lanes. These roads lead to narrower roads that lead to the driveways of homes and businesses. When very few automobiles use the highway system, each vehicle is able to move freely. When more traffic is added, each vehicle moves more slowly. This is especially true on roads with fewer lanes. As more traffic enters the highway system, even multi-lane highways become congested and slow. A data network is much like the highway system. The data packets are comparable to automobiles, and the bandwidth is comparable to the number of lanes on the highway. When a data network is viewed as a system of highways, it is easy to see how low bandwidth connections can cause traffic to become congested all over the network.



This page will explain how bandwidth is measured.

Measurement

2.2.3 In digital systems, the basic unit of bandwidth is bits per second (bps). Bandwidth is the measure of how many bits of information can flow from one place to another in a given amount of time. Although bandwidth can be described in bps, a larger unit of measurement is generally used. Network bandwidth is typically described as thousands of bits per second (kbps), millions of bits per second (Mbps), billions of bits per second (Gbps), and trillions of bits per second (Tbps). Although the terms bandwidth and speed are often used interchangeably, they are not exactly the same thing. One may say, for example, that a T3 connection at 45 Mbps operates at a higher speed than a T1 connection at 1.544 Mbps. However, if only a small amount of their data-carrying capacity is being used, each of these connection types will carry data at roughly the same speed. For example, a small amount of water will flow at the same rate through a small pipe as through a large pipe. Therefore, it is usually more accurate to say that a T3 connection has greater bandwidth than a T1 connection. This is because the T3 connection is able to carry more information in the same period of time, not because it has a higher speed.

The next page will discuss the limitations of bandwidth.

Limitations
2.2.4 Bandwidth varies depending upon the type of media as well as the LAN and WAN technologies used. The physics of the media account for some of the difference. Signals travel through twisted-pair copper wire, coaxial cable, optical fiber, and air. The physical differences in the ways signals travel result in fundamental limitations on the information-carrying capacity of a given medium. However, the actual bandwidth of a network is determined by a combination of the physical media and the technologies chosen for signaling and detecting network signals.


For example, current information about the physics of unshielded twisted-pair (UTP) copper cable puts the theoretical bandwidth limit at over 1 Gbps. However, in actual practice, the bandwidth is determined by the use of 10BASE-T, 100BASE-TX, or 1000BASE-TX Ethernet. The actual bandwidth is determined by the signaling methods, NICs, and other network equipment that is chosen. Therefore, the bandwidth is not determined solely by the limitations of the medium.

Figure shows some common networking media types along with their distance and bandwidth limitations.

Figure summarizes common WAN services and the bandwidth associated with each service.

The next page will discuss the concept of throughput.

VPN/Benefits of VPNs/ Intranet and Extranet



Virtual private network (VPN)
2.1.10 A vitual private network (VPN) is a private network that is constructed within a public network infrastructure such as the global Internet. Using VPN, a telecommuter can remotely access the network of the company headquarters. Through the Internet, a secure tunnel can be built between the PC of the telecommuter and a VPN router at the company headquarters.


The next page will explain the benefits of VPNs.


 
Benefits of VPNs
2.1.11 This page will introduce the three main types of VPNs and explain how they work.


Cisco products support the latest in VPN technology. A VPN is a service that offers secure, reliable connectivity over a shared public network infrastructure such as the Internet. VPNs maintain the same security and management policies as a private network. The use of a VPN is the most cost-effective way to establish a point-to-point connection between remote users and an enterprise network.

The following are the three main types of VPNs:

• Access VPNs provide remote access for mobile and small office, home office (SOHO) users to an Intranet or Extranet over a shared infrastructure. Access VPNs use analog, dialup, ISDN, DSL, mobile IP, and cable technologies to securely connect mobile users, telecommuters, and branch offices.

• Intranet VPNs use dedicated connections to link regional and remote offices to an internal network over a shared infrastructure. Intranet VPNs differ from Extranet VPNs in that they allow access only to the employees of the enterprise.

• Extranet VPNs use dedicated connections to link business partners to an internal network over a shared infrastructure. Extranet VPNs differ from Intranet VPNs in that they allow access to users outside the enterprise.

The next page will introduce intranets and extranets.

This page will teach students about intranets and extranets.


Intranets and extranets
2.1.12 One common configuration of a LAN is an intranet. Intranet Web servers differ from public Web servers in that the public must have the proper permissions and passwords to access the intranet of an organization. Intranets are designed to permit users who have access privileges to the internal LAN of the organization. Within an intranet, Web servers are installed in the network. Browser technology is used as the common front end to access information on servers such as financial, graphical, or text-based data.

Extranets refer to applications and services that are Intranet based, and use extended, secure access to external users or enterprises. This access is usually accomplished through passwords, user IDs, and other application-level security. An extranet is the extension of two or more intranet strategies with a secure interaction between participant enterprises and their respective intranets.

This page concludes this lesson. The next lesson will discuss bandwidth. The first page will explain why bandwidth is important.

Network protocols/ LAN / WAN /


Network protocols
2.1.5 Protocol suites are collections of protocols that enable network communication between hosts. A protocol is a formal description of a set of rules and conventions that govern a particular aspect of how devices on a network communicate. Protocols determine the format, timing, sequencing, and error control in data communication. Without protocols, the computer cannot make or rebuild the stream of incoming bits from another computer into the original format.


Protocols control all aspects of data communication, which include the following:

• How the physical network is built
• How computers connect to the network
• How the data is formatted for transmission
• How that data is sent
• How to deal with errors

These network rules are created and maintained by many different organizations and committees. Included in these groups are the Institute of Electrical and Electronic Engineers (IEEE), American National Standards Institute (ANSI), Telecommunications Industry Association (TIA), Electronic Industries Alliance (EIA) and the International Telecommunications Union (ITU), formerly known as the Comité Consultatif International Téléphonique et Télégraphique (CCITT).


Local-area networks (LANs)
2.1.6 LANs consist of the following components:


• Computers
• Network interface cards
• Peripheral devices
• Networking media
• Network devices

LANs allow businesses to locally share computer files and printers efficiently and make internal communications possible. A good example of this technology is e-mail. LANs manage data, local communications, and computing equipment.

Some common LAN technologies include the following:

• Ethernet
• Token Ring
• FDDI


Wide-area networks (WANs)
2.1.7 WANs interconnect LANs, which then provide access to computers or file servers in other locations. Because WANs connect user networks over a large geographical area, they make it possible for businesses to communicate across great distances. WANs allow computers, printers, and other devices on a LAN to be shared with distant locations. WANs provide instant communications across large geographic areas.


Collaboration software provides access to real-time information and resources and allows meetings to be held remotely. WANs have created a new class of workers called telecommuters. These people never have to leave their homes to go to work.

WANs are designed to do the following:

• Operate over a large and geographically separated area
• Allow users to have real-time communication capabilities with other users
• Provide full-time remote resources connected to local services
• Provide e-mail, Internet, file transfer, and e-commerce services

Some common WAN technologies include the following:

• Modems
• Integrated Services Digital Network (ISDN)
• Digital subscriber line (DSL)
• Frame Relay
• T1, E1, T3, and E3

• Synchronous Optical Network (SONET)


Metropolitan-area networks (MANs)
2.1.8 The next page will introduce metropolitan-area networks (MANs).

Wireless bridge technologies that send signals across public areas can also be used to create a MAN. A MAN usually consists of two or more LANs in a common geographic area. For example, a bank with multiple branches may utilize a MAN. Typically, a service provider is used to connect two or more LAN sites using private communication lines or optical services. A MAN can also be created using wireless bridge technology by beaming signals across public areas.



Storage-area networks (SANs)

2.1.9 A storage-area network (SAN) is a dedicated, high-performance network used to move data between servers and storage resources. Because it is a separate, dedicated network, it avoids any traffic conflict between clients and servers.


SAN technology allows high-speed server-to-storage, storage-to-storage, or server-to-server connectivity. This method uses a separate network infrastructure that relieves any problems associated with existing network connectivity.

SANs offer the following features:

• Performance – SANs allow concurrent access of disk or tape arrays by two or more servers at high speeds. This provides enhanced system performance.
• Availability – SANs have built-in disaster tolerance. Data can be duplicated on a SAN up to 10 km (6.2 miles) away.
• Scalability – A SAN can use a variety of technologies. This allows easy relocation of backup data, operations, file migration, and data replication between systems.

The next page will introduce virtual private networks (VPNs).

Network protocols / Local-area networks (LANs)


Network protocols
2.1.5 Protocol suites are collections of protocols that enable network communication between hosts. A protocol is a formal description of a set of rules and conventions that govern a particular aspect of how devices on a network communicate. Protocols determine the format, timing, sequencing, and error control in data communication. Without protocols, the computer cannot make or rebuild the stream of incoming bits from another computer into the original format.


Protocols control all aspects of data communication, which include the following:

• How the physical network is built
• How computers connect to the network
• How the data is formatted for transmission
• How that data is sent
• How to deal with errors

These network rules are created and maintained by many different organizations and committees. Included in these groups are the Institute of Electrical and Electronic Engineers (IEEE), American National Standards Institute (ANSI), Telecommunications Industry Association (TIA), Electronic Industries Alliance (EIA) and the International Telecommunications Union (ITU), formerly known as the Comité Consultatif International Téléphonique et Télégraphique (CCITT).

Local-area networks (LANs)
2.1.6 LANs consist of the following components:


• Computers
• Network interface cards
• Peripheral devices
• Networking media
• Network devices

LANs allow businesses to locally share computer files and printers efficiently and make internal communications possible. A good example of this technology is e-mail. LANs manage data, local communications, and computing equipment.

Some common LAN technologies include the following:

• Ethernet
• Token Ring
• FDDI


WANs interconnect LANs, which then provide access to computers or file servers in other locations. Because WANs connect user networks over a large geographical area, they make it possible for businesses to communicate across great distances. WANs allow computers, printers, and other devices on a LAN to be shared with distant locations. WANs provide instant communications across large geographic areas.


Collaboration software provides access to real-time information and resources and allows meetings to be held remotely. WANs have created a new class of workers called telecommuters. These people never have to leave their homes to go to work.

WANs are designed to do the following:

• Operate over a large and geographically separated area

• Allow users to have real-time communication capabilities with other users

• Provide full-time remote resources connected to local services

• Provide e-mail, Internet, file transfer, and e-commerce services

Some common WAN technologies include the following:

• Modems

• Integrated Services Digital Network (ISDN)

• Digital subscriber line (DSL)

• Frame Relay

• T1, E1, T3, and E3

• Synchronous Optical Network (SONET)

The next page will introduce metropolitan-area networks (MANs).

Wednesday, November 11, 2009

Network history / Networking Devices / Network topology

Network history
2.1.2 This page presents a simplified view of how the Internet evolved.


The history of computer networking is complex. It has involved many people from all over the world over the past 35 years. Presented here is a simplified view of how the Internet evolved. The processes of invention and commercialization are far more complicated, but it is helpful to look at the fundamental development.

In the 1940s computers were large electromechanical devices that were prone to failure. In 1947 the invention of a semiconductor transistor opened up many possibilities for making smaller, more reliable computers. In the 1950s large institutions began to use mainframe computers, which were run by punched card programs. In the late 1950s the integrated circuit that combined several, and now millions, of transistors on one small piece of semiconductor was invented. In the 1960s mainframes with terminals and integrated circuits were widely used.

In the late 1960s and 1970s smaller computers called minicomputers were created. However, these minicomputers were still very large by modern standards. In 1977 the Apple Computer Company introduced the microcomputer, which was also known as the Mac. In 1981 IBM introduced its first PC. The user-friendly Mac, the open-architecture IBM PC, and the further micro-miniaturization of integrated circuits led to widespread use of personal computers in homes and businesses.

In the mid-1980s PC users began to use modems to share files with other computers. This was referred to as point-to-point, or dial-up communication. This concept was expanded by the use of computers that were the central point of communication in a dial-up connection. These computers were called bulletin boards. Users would connect to the bulletin boards, leave and pick up messages, as well as upload and download files. The drawback to this type of system was that there was very little direct communication and then only with those who knew about the bulletin board. Another limitation was that the bulletin board computer required one modem per connection. If five people connected simultaneously it would require five modems connected to five separate phone lines. As the number of people who wanted to use the system grew, the system was not able to handle the demand. For example, imagine if 500 people wanted to connect at the same time.

From the 1960s to the 1990s the U.S. Department of Defense (DoD) developed large, reliable, wide-area networks (WANs) for military and scientific reasons. This technology was different from the point-to-point communication used in bulletin boards. It allowed multiple computers to be connected together through many different paths. The network itself would determine how to move data from one computer to another. One connection could be used to reach many computers at the same time. The WAN developed by the DoD eventually became the Internet.


Networking devices

2.1.3 Equipment that connects directly to a network segment is referred to as a device. These devices are broken up into two classifications. The first classification is end-user devices. End-user devices include computers, printers, scanners, and other devices that provide services directly to the user. The second classification is network devices. Network devices include all the devices that connect the end-user devices together to allow them to communicate.

End-user devices that provide users with a connection to the network are also referred to as hosts. These devices allow users to share, create, and obtain information. The host devices can exist without a network, but without the network the host capabilities are greatly reduced. NICs are used to physically connect host devices to the network media. They use this connection to send e-mails, print reports, scan pictures, or access databases.

A NIC is a printed circuit board that fits into the expansion slot of a bus on a computer motherboard. It can also be a peripheral device. NICs are sometimes called network adapters. Laptop or notebook computer NICs are usually the size of a PCMCIA card. Each NIC is identified by a unique code called a Media Access Control (MAC) address. This address is used to control data communication for the host on the network. More about the MAC address will be covered later. As the name implies, the NIC controls host access to the network.

There are no standardized symbols for end-user devices in the networking industry. They appear similar to the real devices to allow for quick recognition.

Network devices are used to extend cable connections, concentrate connections, convert data formats, and manage data transfers. Network devices provide extension of cable connections, concentration of connections, conversion of data formats, and management of data transfers. Examples of devices that perform these functions are repeaters, hubs, bridges, switches, and routers. All of the network devices mentioned here are covered in depth later in the course. For now, a brief overview of networking devices will be provided.

A repeater is a network device used to regenerate a signal. Repeaters regenerate analog or digital signals that are distorted by transmission loss due to attenuation. A repeater does not make intelligent decision concerning forwarding packets like a router or bridge.

Hubs concentrate connections. In other words, they take a group of hosts and allow the network to see them as a single unit. This is done passively, without any other effect on the data transmission. Active hubs concentrate hosts and also regenerate signals.

Bridges convert network data formats and perform basic data transmission management. Bridges provide connections between LANs. They also check data to determine if it should cross the bridge. This makes each part of the network more efficient.

Workgroup switches add more intelligence to data transfer management. They can determine if data should remain on a LAN and transfer data only to the connection that needs it. Another difference between a bridge and switch is that a switch does not convert data transmission formats.

Routers have all the capabilities listed above. Routers can regenerate signals, concentrate multiple connections, convert data transmission formats, and manage data transfers. They can also connect to a WAN, which allows them to connect LANs that are separated by great distances. None of the other devices can provide this type of connection.

The Interactive Media Activities will allow students to become more familiar with network devices.

The next page will introduce some common types of network topologies.


Network topology
This page will introduce students to the most common physical and logical network topologies.


2.1.4 Network topology defines the structure of the network. One part of the topology definition is the physical topology, which is the actual layout of the wire or media. The other part is the logical topology, which defines how the hosts access the media to send data. The physical topologies that are commonly used are as follows:

• A bus topology uses a single backbone cable that is terminated at both ends. All the hosts connect directly to this backbone.

• A ring topology connects one host to the next and the last host to the first. This creates a physical ring of cable.

• A star topology connects all cables to a central point.

• An extended star topology links individual stars together by connecting the hubs or switches.

• A hierarchical topology is similar to an extended star. However, instead of linking the hubs or switches together, the system is linked to a computer that controls the traffic on the topology.

• A mesh topology is implemented to provide as much protection as possible from interruption of service. For example, a nuclear power plant might use a mesh topology in the networked control systems. As seen in the graphic, each host has its own connections to all other hosts. Although the Internet has multiple paths to any one location, it does not adopt the full mesh topology.

The logical topology of a network determines how the hosts communicate across the medium. The two most common types of logical topologies are broadcast and token passing.

The use of a broadcast topology indicates that each host sends its data to all other hosts on the network medium. There is no order that the stations must follow to use the network. It is first come, first serve. Ethernet works this way as will be explained later in the course.

The second logical topology is token passing. In this type of topology, an electronic token is passed sequentially to each host. When a host receives the token, that host can send data on the network. If the host has no data to send, it passes the token to the next host and the process repeats itself. Two examples of networks that use token passing are Token Ring and Fiber Distributed Data Interface (FDDI). A variation of Token Ring and FDDI is Arcnet. Arcnet is token passing on a bus topology.

The diagram in Figure shows many different topologies connected by network devices. It shows a network of moderate complexity that is typical of a school or a small business. The diagram includes many symbols and networking concepts that will take time to learn.