Skip to main content

Leased Line / X.25 /

2.2.3 Leased Line
When permanent dedicated connections are required, leased lines are used with capacities ranging up to 2.5 Gbps.
A point-to-point link provides a pre-established WAN communications path from the customer premises through the provider network to a remote destination. Point-to-point lines are usually leased from a carrier and are called leased lines. Leased lines are available in different capacities. These dedicated circuits are generally priced based on bandwidth required and distance between the two connected points. Point-to-point links are generally more expensive than shared services such as Frame Relay. The cost of leased-line solutions can become significant when they are used to connect many sites. There are times when cost of the leased line is outweighed by the benefits. The dedicated capacity gives no latency or jitter between the endpoints. Constant availability is essential for some applications such as electronic commerce.
A router serial port is required for each leased-line connection. A CSU/DSU and the actual circuit from the service provider are also required.
Leased lines are used extensively for building WANs and give permanent dedicated capacity. They have been the traditional connection of choice but have a number of disadvantages. WAN traffic is often variable and leased lines have a fixed capacity. This results in the bandwidth of the line seldom being exactly what is needed. In addition, each end point would need an interface on the router which would increase equipment costs. Any changes to the leased line generally require a site visit by the carrier to change capacity.
Leased lines provide direct point-to-point connections between enterprise LANs and connect individual branches to a packet-switched network. Several connections can be multiplexed over a leased line, resulting in shorter links and fewer required interfaces.

2.2.4   X.25
In response to the expense of leased lines, telecommunications providers introduced packet-switched networks using shared lines to reduce costs. The first of these packet-switched networks was standardized as the X.25 group of protocols. X.25 provides a low bit rate shared variable capacity that may be either switched or permanent.
X.25 is a network-layer protocol and subscribers are provided with a network address. Virtual circuits can be established through the network with call request packets to the target address. The resulting SVC is identified by a channel number. Data packets labeled with the channel number are delivered to the corresponding address. Multiple channels can be active on a single connection.
Subscribers connect to the X.25 network with either leased lines or dialup connections. X.25 networks can also have pre-established channels between subscribers that provide a PVC.
X.25 can be very cost effective because tariffs are based on the amount of data delivered rather than connection time or distance. Data can be delivered at any rate up to the connection capacity. This provides some flexibility. X.25 networks are usually low capacity, with a maximum of 48 kbps. In addition, the data packets are subject to the delays typical of shared networks.
X.25 technology is no longer widely available as a WAN technology in the US. Frame Relay has replaced X.25 at many service provider locations.
Typical X.25 applications are point-of-sale card readers. These readers use X.25 in dialup mode to validate transactions on a central computer. Some enterprises also use X.25 based value-added networks (VAN) to transfer Electronic Data Interchange (EDI) invoices, bills of lading, and other commercial documents. For these applications, the low bandwidth and high latency are not a concern, because the low cost makes the use of X.25 affordable.

Comments

Popular posts from this blog

OSI layers / Peer-to-peer communications / TCP/IP model

OSI layers 2.3.4 This page discusses the seven layers of the OSI model. The OSI reference model is a framework that is used to understand how information travels throughout a network. The OSI reference model explains how packets travel through the various layers to another device on a network, even if the sender and destination have different types of network media. In the OSI reference model, there are seven numbered layers, each of which illustrates a particular network function. - Dividing the network into seven layers provides the following advantages: • It breaks network communication into smaller, more manageable parts. • It standardizes network components to allow multiple vendor development and support. • It allows different types of network hardware and software to communicate with each other. • It prevents changes in one layer from affecting other layers. • It divides network communication into smaller parts to make learning it easier to understand. In the foll...

Advantages and disadvantages of link-state routing

Advantages and disadvantages of link-state routing 2.1.5  This page lists the advantages and disadvantages of link-state routing protocols. The following are advantages of link-state routing protocols:  Link-state protocols use cost metrics to choose paths through the network. The cost metric reflects the capacity of the links on those paths. Link-state protocols use triggered updates and LSA floods to immediately report changes in the network topology to all routers in the network. This leads to fast convergence times. Each router has a complete and synchronized picture of the network. Therefore, it is very difficult for routing loops to occur. Routers use the latest information to make the best routing decisions. The link-state database sizes can be minimized with careful network design. This leads to smaller Dijkstra calculations and faster convergence. Every router, at the very least, maps the topology of it...

Ports for services

Ports for services 10.2.2  Services running on hosts must have a port number assigned to them so communication can occur. A remote host attempting to connect to a service expects that service to use specific transport layer protocols and ports. Some ports, which are defined in RFC 1700, are known as the well-known ports. These ports are reserved in both TCP and UDP.  These well-known ports define applications that run above the transport layer protocols. For example, a server that runs FTP will use ports 20 and 21 to forward TCP connections from clients to its FTP application. This allows the server to determine which service a client requests. TCP and UDP use port numbers to determine the correct service to which requests are forwarded. The next page will discuss ports in greater detail.