Skip to main content

Reduntant Topoligies / Redundant switched topologies

Redundant Topoligies
7.1.2 This page will explain the concept and benefits of a redundant topology.
A goal of redundant topologies is to eliminate network outages caused by a single point of failure. All networks need redundancy for enhanced reliability.
A network of roads is a global example of a redundant topology. If one road is closed for repair, there is likely an alternate route to the destination. 
Consider a community separated by a river from the town center. If there is only one bridge across the river, there is only one way into town. The topology has no redundancy. 
If the bridge is flooded or damaged by an accident, travel to the town center across the bridge is impossible. 
A second bridge across the river creates a redundant topology. The suburb is not cut off from the town center if one bridge is impassable.   
The next page will describe redundant switched topologies.
Redundant switched topologies
7.1.3 This page will explain how switches operate in a redundant topology.
Networks with redundant paths and devices allow for more network uptime. Redundant topologies eliminate single points of failure. If a path or device fails, the redundant path or device can take over the tasks of the failed path or device. 
If Switch A fails, traffic can still flow from Segment 2 to Segment 1 and to the router through Switch B.
Switches learn the MAC addresses of devices on their ports so that data can be properly forwarded to the destination. Switches flood frames for unknown destinations until they learn the MAC addresses of the devices. Broadcasts and multicasts are also flooded. 
A redundant switched topology may cause broadcast storms, multiple frame copies, and MAC address table instability problems.
The next page will discuss broadcast storms.

Comments

Popular posts from this blog

OSI layers / Peer-to-peer communications / TCP/IP model

OSI layers 2.3.4 This page discusses the seven layers of the OSI model. The OSI reference model is a framework that is used to understand how information travels throughout a network. The OSI reference model explains how packets travel through the various layers to another device on a network, even if the sender and destination have different types of network media. In the OSI reference model, there are seven numbered layers, each of which illustrates a particular network function. - Dividing the network into seven layers provides the following advantages: • It breaks network communication into smaller, more manageable parts. • It standardizes network components to allow multiple vendor development and support. • It allows different types of network hardware and software to communicate with each other. • It prevents changes in one layer from affecting other layers. • It divides network communication into smaller parts to make learning it easier to understand. In the foll...

Advantages and disadvantages of link-state routing

Advantages and disadvantages of link-state routing 2.1.5  This page lists the advantages and disadvantages of link-state routing protocols. The following are advantages of link-state routing protocols:  Link-state protocols use cost metrics to choose paths through the network. The cost metric reflects the capacity of the links on those paths. Link-state protocols use triggered updates and LSA floods to immediately report changes in the network topology to all routers in the network. This leads to fast convergence times. Each router has a complete and synchronized picture of the network. Therefore, it is very difficult for routing loops to occur. Routers use the latest information to make the best routing decisions. The link-state database sizes can be minimized with careful network design. This leads to smaller Dijkstra calculations and faster convergence. Every router, at the very least, maps the topology of it...

Ports for services

Ports for services 10.2.2  Services running on hosts must have a port number assigned to them so communication can occur. A remote host attempting to connect to a service expects that service to use specific transport layer protocols and ports. Some ports, which are defined in RFC 1700, are known as the well-known ports. These ports are reserved in both TCP and UDP.  These well-known ports define applications that run above the transport layer protocols. For example, a server that runs FTP will use ports 20 and 21 to forward TCP connections from clients to its FTP application. This allows the server to determine which service a client requests. TCP and UDP use port numbers to determine the correct service to which requests are forwarded. The next page will discuss ports in greater detail.