Skip to main content

The function of a wildcard mask

The function of a wildcard mask
11.1.4
This page will explain what a wildcard mask is and how it is used. A wildcard mask is a 32-bit quantity that is divided into four octets. A wildcard mask is paired with an IP address. The numbers one and zero in the mask are used to identify how to treat the corresponding IP address bits. The term wildcard mask represents the ACL mask-bit matching process and comes from an analogy of a wildcard that matches any other card in the game of poker. Wildcard masks have no functional relationship with subnet masks. They are used for different purposes and follow different rules.
The subnet mask and the wildcard mask represent two different things when they are compared to an IP address. Subnet masks use binary ones and zeros to identify the network, subnet, and host portion of an IP address. Wildcard masks use binary ones and zeros to filter individual or groups of IP addresses to permit or deny access to resources based on an IP address. The only similarity between a wildcard mask and a subnet mask is that they are both thirty-two bits long and use binary ones and zeros.
The mask in Figure would be written as 0.0.255.255. A zero indicates a value that will be checked. The Xs, or ones, are used to block values.  In the wildcard mask process, the IP address in the access-list statement has the wildcard mask applied to it. This creates the match value, which is used to compare and see if a packet should be processed by this ACL statement, or sent to the next statement to be checked. The second part of the ACL process is that any IP address that is checked by a particular ACL statement will have the wildcard mask of that statement applied to it. The result of the IP address and the wildcard mask must equal the match value of the ACL. This process is illustrated in the animation in Figure . There are two special keywords that are used in ACLs, the any and host options. The any option substitutes 0.0.0.0 for the IP address and 255.255.255.255 for the wildcard mask. This option will match any address that it is compared against. The host option substitutes 0.0.0.0 for the mask. This mask requires that all bits of the ACL address and the packet address match. This option will match just one address. The next page will teach students how to verify ACLs.

Comments

Popular posts from this blog

OSI layers / Peer-to-peer communications / TCP/IP model

OSI layers 2.3.4 This page discusses the seven layers of the OSI model. The OSI reference model is a framework that is used to understand how information travels throughout a network. The OSI reference model explains how packets travel through the various layers to another device on a network, even if the sender and destination have different types of network media. In the OSI reference model, there are seven numbered layers, each of which illustrates a particular network function. - Dividing the network into seven layers provides the following advantages: • It breaks network communication into smaller, more manageable parts. • It standardizes network components to allow multiple vendor development and support. • It allows different types of network hardware and software to communicate with each other. • It prevents changes in one layer from affecting other layers. • It divides network communication into smaller parts to make learning it easier to understand. In the foll...

Advantages and disadvantages of link-state routing

Advantages and disadvantages of link-state routing 2.1.5  This page lists the advantages and disadvantages of link-state routing protocols. The following are advantages of link-state routing protocols:  Link-state protocols use cost metrics to choose paths through the network. The cost metric reflects the capacity of the links on those paths. Link-state protocols use triggered updates and LSA floods to immediately report changes in the network topology to all routers in the network. This leads to fast convergence times. Each router has a complete and synchronized picture of the network. Therefore, it is very difficult for routing loops to occur. Routers use the latest information to make the best routing decisions. The link-state database sizes can be minimized with careful network design. This leads to smaller Dijkstra calculations and faster convergence. Every router, at the very least, maps the topology of it...

Ports for services

Ports for services 10.2.2  Services running on hosts must have a port number assigned to them so communication can occur. A remote host attempting to connect to a service expects that service to use specific transport layer protocols and ports. Some ports, which are defined in RFC 1700, are known as the well-known ports. These ports are reserved in both TCP and UDP.  These well-known ports define applications that run above the transport layer protocols. For example, a server that runs FTP will use ports 20 and 21 to forward TCP connections from clients to its FTP application. This allows the server to determine which service a client requests. TCP and UDP use port numbers to determine the correct service to which requests are forwarded. The next page will discuss ports in greater detail.