Skip to main content

Multiple conversations between hosts

Multiple conversations between hosts
10.2.1 At any given moment, thousands of packets that provide hundreds of different services travel through a modern network. Many servers use a multitude of services and this causes unique problems for the addressing of packets. If a server is running both SMTP and HTTP, it uses the destination port field to determine what service the source is requesting. The source cannot construct a packet destined for just the server IP address because the destination would not know what service was being requested. A port number must be associated with the conversation between hosts to ensure that the packet reaches the appropriate service on the server. If a server could not distinguish between different conversations, a client could not send an e-mail and browse a Web page at the same time. A method for transport layer conversations to be separated must be used.
Hosts running TCP/IP associate ports at the transport layer with certain applications. Port numbers are used to keep track of different conversations that cross the network at the same time. Port numbers are needed for a host to communicate with a server that uses multiple services. Both TCP and UDP use port or socket numbers to pass information to the upper layers.
Application software developers have agreed to use the well-known port numbers that are defined in RFC1700. Any conversation bound for the FTP application uses the standard port number 21. Conversations that do not involve applications with well-known port numbers are assigned port numbers that have been randomly selected from within a specific range. These port numbers are used as source and destination addresses in the TCP segment. 
Port numbers have the following assigned ranges:
  • The Well Known Ports are those from 0 through 1023
  • The Registered Ports are those from 1024 through 49151
  • The Dynamic and/or Private Ports are those from 49152 through 65535
Systems initiating communication requests use port numbers to select proper applications. Source port numbers for these requests are dynamically assigned by the originating host, and are usually a number larger than 1023. Port numbers in the range of 0-1023 are considered public port numbers and are controlled by the Internet Assigned Numbers Authority (IANA).
Post office box numbers are a good analogy for port numbers. A piece of mail may be sent to a zip code, city, and P.O. box. The zip code and city direct mail to the correct general mail facility while the P.O. box ensures the item is delivered to the one individual to whom the mail is addressed. Similarly, the IP address gets the packet to the correct server, but the TCP or UDP port number guarantees the packet is passed to the correct application.
The next page will discuss well-known ports.

Comments

Popular posts from this blog

OSI layers / Peer-to-peer communications / TCP/IP model

OSI layers 2.3.4 This page discusses the seven layers of the OSI model. The OSI reference model is a framework that is used to understand how information travels throughout a network. The OSI reference model explains how packets travel through the various layers to another device on a network, even if the sender and destination have different types of network media. In the OSI reference model, there are seven numbered layers, each of which illustrates a particular network function. - Dividing the network into seven layers provides the following advantages: • It breaks network communication into smaller, more manageable parts. • It standardizes network components to allow multiple vendor development and support. • It allows different types of network hardware and software to communicate with each other. • It prevents changes in one layer from affecting other layers. • It divides network communication into smaller parts to make learning it easier to understand. In the foll...

Advantages and disadvantages of link-state routing

Advantages and disadvantages of link-state routing 2.1.5  This page lists the advantages and disadvantages of link-state routing protocols. The following are advantages of link-state routing protocols:  Link-state protocols use cost metrics to choose paths through the network. The cost metric reflects the capacity of the links on those paths. Link-state protocols use triggered updates and LSA floods to immediately report changes in the network topology to all routers in the network. This leads to fast convergence times. Each router has a complete and synchronized picture of the network. Therefore, it is very difficult for routing loops to occur. Routers use the latest information to make the best routing decisions. The link-state database sizes can be minimized with careful network design. This leads to smaller Dijkstra calculations and faster convergence. Every router, at the very least, maps the topology of it...

Ports for services

Ports for services 10.2.2  Services running on hosts must have a port number assigned to them so communication can occur. A remote host attempting to connect to a service expects that service to use specific transport layer protocols and ports. Some ports, which are defined in RFC 1700, are known as the well-known ports. These ports are reserved in both TCP and UDP.  These well-known ports define applications that run above the transport layer protocols. For example, a server that runs FTP will use ports 20 and 21 to forward TCP connections from clients to its FTP application. This allows the server to determine which service a client requests. TCP and UDP use port numbers to determine the correct service to which requests are forwarded. The next page will discuss ports in greater detail.