Skip to main content

Posts

Showing posts from 2024

RIP Version 2

1.2  RIP Version 2 1.2.1 RIP history This page will explain the functions and limitations of RIP. The Internet is a collection of autonomous systems (AS). Each AS is generally administered by a single entity. Each AS has a routing technology which can differ from other autonomous systems. The routing protocol used within an AS is referred to as an Interior Gateway Protocol (IGP). A separate protocol used to transfer routing information between autonomous systems is referred to as an Exterior Gateway Protocol (EGP). RIP is designed to work as an IGP in a moderate-sized AS. It is not intended for use in more complex environments. RIP v1 is considered a classful IGP. RIP v1 is a distance vector protocol that broadcasts the entire routing table to each neighbor router at predetermined intervals. The default interval is 30 seconds. RIP uses hop count as a metric, with 15 as the maximum number of hops. If the router receives information about a network, and the receiving interface belong...

Configuring VLSM

  Configuring VLSM 1.1.6 This page will teach students how to calculate and configure VLSM. If VLSM is the scheme chosen, it must then be calculated and configured correctly. The following are VLSM calculations for the LAN connections in Figure : Network address: 192.168.10.0 The Perth router has to support 60 hosts. That means a minimum of six bits are needed in the host portion of the address. Six bits will yield 2 6 – 2, or 62 possible host addresses. The LAN connection for the Perth router is assigned the 192.168.10.0/26 subnet. The Sydney and Singapore routers have to support 12 hosts each. That means a minimum of four bits are needed in the host portion of the address. Four bits will yield 2 4 – 2, or 14 possible host addresses. The LAN connection for the Sydney router is assigned the 192.168.10.96/28 subnet and the LAN connection for the Singapore router is assigned the 192.168.10.112/28 subnet. The KL ro...

Route aggregation with VLSM

  Route aggregation with VLSM 1.1.5  When VLSM is used, it is important to keep the subnetwork numbers grouped together in the network to allow for aggregation. For example, networks like 172.16.14.0 and 172.16.15.0 should be near one another so that the routers only carry a route for 172.16.14.0/23. The use of classless interdomain routing (CIDR) and VLSM prevents address waste and promotes route aggregation, or summarization. Without route summarization, Internet backbone routing would likely have collapsed sometime before 1997. Figure illustrates how route summarization reduces the burden on upstream routers. This complex hierarchy of variable-sized networks and subnetworks is summarized at various points with a prefix address, until the entire network is advertised as a single aggregate route of 200.199.48.0/20. Route summarization, or supernetting, is only possible if the routers of a network use a classless routing protocol, such as OSPF or EIGRP. Classless routing proto...

Calculating subnets with VLSM

 Calculating subnets with VLSM 1.1.4 VLSM helps to manage IP addresses. This page will explain how to use VLSM to set subnet masks that fit the link or segment requirements. A subnet mask should satisfy the requirements of a LAN with one subnet mask and the requirements of a point-to-point WAN with another. The example in Figure shows a network that requires an address scheme. The example contains a Class B address of 172.16.0.0 and two LANs that require at least 250 hosts each. If the routers use a classful routing protocol, the WAN link must be a subnet of the same Class B network. Classful routing protocols such as RIP v1, IGRP, and EGP do not support VLSM. Without VLSM, the WAN link would need the same subnet mask as the LAN segments. A 24-bit mask of 255.255.255.0 can support 250 hosts.   The WAN link only needs two addresses, one for each router. That means that 252 addresses would be wasted. If VLSM was used, a 24-bit mask would still be applied on the LAN segments for ...