Skip to main content

EIGRP design features

EIGRP design features
3.1.4

This page will describe some key design features of EIGRP.
EIGRP operates quite differently from IGRP. EIGRP is an advance distance vector routing protocol, but also acts as a link-state protocol in the way that it updates neighbors and maintains routing information. The following are advantages of EIGRP over simple distance vector protocols:
  • Rapid convergence
  • Efficient use of bandwidth
  • Support for VLSM and CIDR.
  • Multiple network layer support
  • Independence from routed protocols.
Independence from routed protocols means that protocol-dependent modules (PDMs) protect EIGRP from lengthy revision. As routed protocols evolve, they may need new protocol modules, but changes to EIGRP will not be necessary.
EIGRP routers converge quickly because they rely on DUAL. DUAL guarantees loop-free operation throughout a route computation which allows all routers involved in a topology change to synchronize at the same time.
EIGRP sends partial, bounded updates and makes efficient use of bandwidth. EIGRP uses minimal bandwidth when the network is stable. EIGRP routers do not send the complete tables, but instead, send partial, incremental updates. This is similar to OSPF operation, except that EIGRP routers send these partial updates only to the routers that need the information, not to all routers in an area. For this reason, they are called bounded updates. Instead of timed routing updates, EIGRP routers use small hello packets to keep in touch with each other. Though exchanged regularly, hello packets do not use up a significant amount of bandwidth.
EIGRP supports IP, IPX, and AppleTalk through PDMs. EIGRP can redistribute IPX-RIP and IPX SAP information to improve overall performance. In effect, EIGRP can take over for these two protocols. EIGRP routers receive routing and service updates, and update other routers only when changes in the SAP or routing tables occur. In EIGRP networks, routing updates occur in partial updates.
EIGRP can also take over for the AppleTalk RTMP. As a distance vector routing protocol, RTMP relies on periodic and complete exchanges of routing information. To reduce overhead, EIGRP uses event-driven updates to redistributes AppleTalk routing information. EIGRP also uses a configurable composite metric to determine the best route to an AppleTalk network. RTMP uses hop count, which can result in suboptimal routing. AppleTalk clients expect RTMP information from local routers, so EIGRP for AppleTalk should be run only on a clientless network, such as a WAN link.
The next page will discuss some EIGRP technologies.

Comments

Popular posts from this blog

OSI layers / Peer-to-peer communications / TCP/IP model

OSI layers 2.3.4 This page discusses the seven layers of the OSI model. The OSI reference model is a framework that is used to understand how information travels throughout a network. The OSI reference model explains how packets travel through the various layers to another device on a network, even if the sender and destination have different types of network media. In the OSI reference model, there are seven numbered layers, each of which illustrates a particular network function. - Dividing the network into seven layers provides the following advantages: • It breaks network communication into smaller, more manageable parts. • It standardizes network components to allow multiple vendor development and support. • It allows different types of network hardware and software to communicate with each other. • It prevents changes in one layer from affecting other layers. • It divides network communication into smaller parts to make learning it easier to understand. In the foll...

Advantages and disadvantages of link-state routing

Advantages and disadvantages of link-state routing 2.1.5  This page lists the advantages and disadvantages of link-state routing protocols. The following are advantages of link-state routing protocols:  Link-state protocols use cost metrics to choose paths through the network. The cost metric reflects the capacity of the links on those paths. Link-state protocols use triggered updates and LSA floods to immediately report changes in the network topology to all routers in the network. This leads to fast convergence times. Each router has a complete and synchronized picture of the network. Therefore, it is very difficult for routing loops to occur. Routers use the latest information to make the best routing decisions. The link-state database sizes can be minimized with careful network design. This leads to smaller Dijkstra calculations and faster convergence. Every router, at the very least, maps the topology of it...

Ports for services

Ports for services 10.2.2  Services running on hosts must have a port number assigned to them so communication can occur. A remote host attempting to connect to a service expects that service to use specific transport layer protocols and ports. Some ports, which are defined in RFC 1700, are known as the well-known ports. These ports are reserved in both TCP and UDP.  These well-known ports define applications that run above the transport layer protocols. For example, a server that runs FTP will use ports 20 and 21 to forward TCP connections from clients to its FTP application. This allows the server to determine which service a client requests. TCP and UDP use port numbers to determine the correct service to which requests are forwarded. The next page will discuss ports in greater detail.