Skip to main content

Configuring OSPF loopback address and router priority


Configuring OSPF loopback address and router priority
2.3.2


This page will explain the purpose of an OSPF loopback interface. Students will also learn how to assign an IP address to a loopback interface.
When the OSPF process starts, the Cisco IOS uses the highest local active IP address as its OSPF router ID. If there is no active interface, the OSPF process will not start. If the active interface goes down, the OSPF process has no router ID and therefore ceases to function until the interface comes up again.
To ensure OSPF stability there should be an active interface for the OSPF process at all times. A loopback interface, which is a logical interface, can be configured for this purpose. When a loopback interface is configured, OSPF uses this address as the router ID, regardless of the value. On a router that has more than one loopback interface, OSPF takes the highest loopback IP address as its router ID.
To create and assign an IP address to a loopback interface use the following commands:
Router(config)#interface loopback number
Router(config-if)#ip address ip-address subnet-mask
It is considered good practice to use loopback interfaces for all routers running OSPF. This loopback interface should be configured with an address using a 32-bit subnet mask of 255.255.255.255. A 32-bit subnet mask is called a host mask because the subnet mask specifies a network of one host. When OSPF is requested to advertise a loopback network, OSPF always advertises the loopback as a host route with a 32-bit mask.
In broadcast multi-access networks there may be more than two routers. OSPF elects a designated router (DR) to be the focal point of all link-state updates and link-state advertisements. Because the DR role is critical, a backup designated router (BDR) is elected to take over if the DR fails.
If the network type of an interface is broadcast, the default OSPF priority is 1. When OSPF priorities are the same, the OSPF election for DR is decided on the router ID. The highest router ID is selected.
The election result can be determined by ensuring that the ballots, the hello packets, contain a priority for that router interface. The interface reporting the highest priority for a router will ensure that it becomes the DR.
The priorities can be set to any value from 0 to 255. A value of 0 prevents that router from being elected. A router with the highest OSPF priority will be selected as the DR. A router with the second highest priority will be the BDR. After the election process, the DR and BDR retain their roles even if routers are added to the network with higher OSPF priority values.
Modify the OSPF priority by entering global interface configuration ip ospf priority command on an interface that is participating in OSPF. The command show ip ospf interface will display the interface priority value as well as other key information.
Router(config-if)#ip ospf prioritynumber
Router#show ip ospf interfacetype number
The Lab Activity will teach students to configure loopback interfaces for OSPF as well as observe the election process for DR and BDR.
The next page will discuss the OSPF cost metric.

Comments

Popular posts from this blog

OSI layers / Peer-to-peer communications / TCP/IP model

OSI layers 2.3.4 This page discusses the seven layers of the OSI model. The OSI reference model is a framework that is used to understand how information travels throughout a network. The OSI reference model explains how packets travel through the various layers to another device on a network, even if the sender and destination have different types of network media. In the OSI reference model, there are seven numbered layers, each of which illustrates a particular network function. - Dividing the network into seven layers provides the following advantages: • It breaks network communication into smaller, more manageable parts. • It standardizes network components to allow multiple vendor development and support. • It allows different types of network hardware and software to communicate with each other. • It prevents changes in one layer from affecting other layers. • It divides network communication into smaller parts to make learning it easier to understand. In the foll...

Advantages and disadvantages of link-state routing

Advantages and disadvantages of link-state routing 2.1.5  This page lists the advantages and disadvantages of link-state routing protocols. The following are advantages of link-state routing protocols:  Link-state protocols use cost metrics to choose paths through the network. The cost metric reflects the capacity of the links on those paths. Link-state protocols use triggered updates and LSA floods to immediately report changes in the network topology to all routers in the network. This leads to fast convergence times. Each router has a complete and synchronized picture of the network. Therefore, it is very difficult for routing loops to occur. Routers use the latest information to make the best routing decisions. The link-state database sizes can be minimized with careful network design. This leads to smaller Dijkstra calculations and faster convergence. Every router, at the very least, maps the topology of it...

Ports for services

Ports for services 10.2.2  Services running on hosts must have a port number assigned to them so communication can occur. A remote host attempting to connect to a service expects that service to use specific transport layer protocols and ports. Some ports, which are defined in RFC 1700, are known as the well-known ports. These ports are reserved in both TCP and UDP.  These well-known ports define applications that run above the transport layer protocols. For example, a server that runs FTP will use ports 20 and 21 to forward TCP connections from clients to its FTP application. This allows the server to determine which service a client requests. TCP and UDP use port numbers to determine the correct service to which requests are forwarded. The next page will discuss ports in greater detail.