Skip to main content

Summary

Summary



This page summarizes the topics discussed in this module.
CDP is used to obtain information about directly connected Cisco devices. This includes the router interfaces the devices are connected to, the interfaces used to make the connections, and the model numbers of the devices. CDP is media and protocol independent, and runs on all Cisco equipment over SNAP. It is a Layer 2 protocol that connects lower physical media and upper network layer protocols.
When a Cisco device boots up, CDP starts up automatically and allows the device to detect directly connected Cisco devices that also use CDP. It operates at the data link layer and allows two systems to learn about each other, even if they use different network layer protocols. The show cdp neighbors command is used to display information about the networks that are directly connected to a router.
The cdp run command is used to enable CDP globally on a router. The cdp enable command is used to enable CDP on a particular interface. To disable CDP at the global level, use the no cdp run command in global configuration mode.
The telnet command may be run from the user or privileged EXEC mode. It allows a user to remotely access another device. It is not necessary to enter the command connect or telnet to establish a Telnet connection. To end a Telnet session, use the exit or logout commands. Once the Telnet session is completed, log off the host. The Telnet connection will terminate after ten minutes of inactivity by default or when the exit command is entered at the user or privileged EXEC prompt.
Other connectivity tests include ping and traceroute. The ping command sends a packet to the destination host and then waits for a reply packet from that host. Results from this echo protocol can help determine the path-to-host reliability, delays over the path, and if the host can be reached or is functional. The traceroute command is similar to the ping command, except that instead of testing end-to-end connectivity, traceroute tests each step along the way. This operation can be performed at either the user or privileged EXEC levels.

Comments

Popular posts from this blog

OSI layers / Peer-to-peer communications / TCP/IP model

OSI layers 2.3.4 This page discusses the seven layers of the OSI model. The OSI reference model is a framework that is used to understand how information travels throughout a network. The OSI reference model explains how packets travel through the various layers to another device on a network, even if the sender and destination have different types of network media. In the OSI reference model, there are seven numbered layers, each of which illustrates a particular network function. - Dividing the network into seven layers provides the following advantages: • It breaks network communication into smaller, more manageable parts. • It standardizes network components to allow multiple vendor development and support. • It allows different types of network hardware and software to communicate with each other. • It prevents changes in one layer from affecting other layers. • It divides network communication into smaller parts to make learning it easier to understand. In the foll...

Advantages and disadvantages of link-state routing

Advantages and disadvantages of link-state routing 2.1.5  This page lists the advantages and disadvantages of link-state routing protocols. The following are advantages of link-state routing protocols:  Link-state protocols use cost metrics to choose paths through the network. The cost metric reflects the capacity of the links on those paths. Link-state protocols use triggered updates and LSA floods to immediately report changes in the network topology to all routers in the network. This leads to fast convergence times. Each router has a complete and synchronized picture of the network. Therefore, it is very difficult for routing loops to occur. Routers use the latest information to make the best routing decisions. The link-state database sizes can be minimized with careful network design. This leads to smaller Dijkstra calculations and faster convergence. Every router, at the very least, maps the topology of it...

Ports for services

Ports for services 10.2.2  Services running on hosts must have a port number assigned to them so communication can occur. A remote host attempting to connect to a service expects that service to use specific transport layer protocols and ports. Some ports, which are defined in RFC 1700, are known as the well-known ports. These ports are reserved in both TCP and UDP.  These well-known ports define applications that run above the transport layer protocols. For example, a server that runs FTP will use ports 20 and 21 to forward TCP connections from clients to its FTP application. This allows the server to determine which service a client requests. TCP and UDP use port numbers to determine the correct service to which requests are forwarded. The next page will discuss ports in greater detail.