Skip to main content

Module 4: Overview / Learning about Other Devices / Introduction to CDP / Information obtained with CDP

Overview

Sometimes network documentation is incomplete or inaccurate. Cisco Discovery Protocol (CDP) is a useful tool in these situations because it can build a basic picture of a network. CDP is a media and protocol independent, Cisco proprietary protocol used for neighbor discovery. CDP will only show information about directly connected neighbors but it is still a powerful tool.
After a router is initially configured it is often difficult to connect directly to the router for configuration changes or other activities. Telnet is a TCP/IP-based application that allows remote connection to the router command-line interface (CLI) for configuration, monitoring, and troubleshooting purposes. Telnet is an essential tool for network professionals.
This module covers some of the objectives for the CCNA 640-801, INTRO 640-821, and ICND 640-811 exams. -
Students who complete this module should be able to perform the following tasks:
  • Enable and disable CDP
  • Use the show cdp neighbors command
  • Determine which neighbor devices are connected to each local interface
  • Gather network address information about neighbor devices that use CDP
  • Establish a Telnet connection
  • Verify a Telnet connection
  • Disconnect from a Telnet session
  • Suspend a Telnet session
  • Perform alternative connectivity tests
  • Troubleshoot remote terminal connections 
 
4.1 Discovering and Connecting to Neighbors

Introduction to CDP 

4.1.1 This page will introduce Cisco Discovery Protocol (CDP). CDP is a Layer 2 protocol that connects lower physical media and upper network layer protocols, as shown in Figure  . CDP is used to obtain information about neighboring Cisco devices, such as the types of devices connected, the router interfaces they are connected to, the interfaces used to make the connections, and the model numbers of the devices. CDP is media and protocol independent, and runs on all Cisco equipment over the Subnetwork Access Protocol (SNAP).
CDP Version 2 (CDPv2) is the most recent release of the protocol. Cisco IOS Release 12.0(3)T or later supports CDPv2. CDP Version 1 (CDPv1) is enabled by default with Cisco IOS Release 10.3 to 12.0(3)T.
When a Cisco device boots up, CDP starts up automatically and allows the device to detect neighbor devices that use CDP. CDP operates at the data link layer and allows two systems to learn about each other, even if they use different network layer protocols.
Each device that is configured for CDP sends periodic messages, which are known as advertisements, to directly connected Cisco devices. Each device advertises at least one address at which it can receive Simple Network Management Protocol (SNMP) messages. The advertisements also contain time-to-live or holdtime information, which indicates the length of time that receiving devices should hold CDP information before they discard it. Each device also listens to periodic CDP messages that are sent by others to learn about neighbor devices.
The next page will explain how CDP collects and delivers information. 
Information obtained with CDP 

4.1.2 This page will explain how CDP is used to obtain information about network devices.
The primary use of CDP is to discover all Cisco devices that are directly connected to a local device. Use the show cdp neighbors command to display CDP updates on the local device.
Figure displays an example of how CDP delivers its collection of information to a network administrator. Each router that uses CDP exchanges protocol information with its neighbors. The network administrator can display the results of this CDP information exchange on a console that is connected to a local router.
An administrator can use the show cdp neighbors command to display information about the networks that are directly connected to a router. CDP transmits type length values (TLVs) to provide information about each CDP neighbor device. TLVs are blocks of information embedded in CDP advertisements.
Device TLVs displayed by the show cdp neighbors command include the following:
  • Device ID
  • Local Interface
  • Holdtime
  • Capability
  • Platform
  • Port ID
The following TLVs are only included in CDPv2:
  • VTP management domain name
  • Native VLAN
  • Full or half-duplex
Notice that the router at the bottom of Figure is not directly connected to the console router that is used by the administrator. To obtain CDP information about this device, the administrator would need to Telnet to a router that is directly connected to this device.
The next page will introduce the commands that are used to monitor CDP information.  
 

Comments

Popular posts from this blog

OSI layers / Peer-to-peer communications / TCP/IP model

OSI layers 2.3.4 This page discusses the seven layers of the OSI model. The OSI reference model is a framework that is used to understand how information travels throughout a network. The OSI reference model explains how packets travel through the various layers to another device on a network, even if the sender and destination have different types of network media. In the OSI reference model, there are seven numbered layers, each of which illustrates a particular network function. - Dividing the network into seven layers provides the following advantages: • It breaks network communication into smaller, more manageable parts. • It standardizes network components to allow multiple vendor development and support. • It allows different types of network hardware and software to communicate with each other. • It prevents changes in one layer from affecting other layers. • It divides network communication into smaller parts to make learning it easier to understand. In the foll...

Advantages and disadvantages of link-state routing

Advantages and disadvantages of link-state routing 2.1.5  This page lists the advantages and disadvantages of link-state routing protocols. The following are advantages of link-state routing protocols:  Link-state protocols use cost metrics to choose paths through the network. The cost metric reflects the capacity of the links on those paths. Link-state protocols use triggered updates and LSA floods to immediately report changes in the network topology to all routers in the network. This leads to fast convergence times. Each router has a complete and synchronized picture of the network. Therefore, it is very difficult for routing loops to occur. Routers use the latest information to make the best routing decisions. The link-state database sizes can be minimized with careful network design. This leads to smaller Dijkstra calculations and faster convergence. Every router, at the very least, maps the topology of it...

Ports for services

Ports for services 10.2.2  Services running on hosts must have a port number assigned to them so communication can occur. A remote host attempting to connect to a service expects that service to use specific transport layer protocols and ports. Some ports, which are defined in RFC 1700, are known as the well-known ports. These ports are reserved in both TCP and UDP.  These well-known ports define applications that run above the transport layer protocols. For example, a server that runs FTP will use ports 20 and 21 to forward TCP connections from clients to its FTP application. This allows the server to determine which service a client requests. TCP and UDP use port numbers to determine the correct service to which requests are forwarded. The next page will discuss ports in greater detail.