Skip to main content

Semester 3 

Module 1: Introduction to Classless Routing - Overview

Network administrators must anticipate and manage the physical growth of networks. This may require them to buy or lease another floor of a building for new network equipment such as racks, patch panels, switches, and routers. Network designers must choose address schemes that allow for growth. Variable-length subnet mask (VLSM) is used to create efficient and scalable address schemes.

Almost every enterprise must implement an IP address scheme. Many organizations select TCP/IP as the only routed protocol to run on their networks. Unfortunately, the architects of TCP/IP did not predict that the protocol would eventually sustain a global network of information, commerce, and entertainment.

IPv4 offered an address strategy that was scalable for a time before it resulted in an inefficient allocation of addresses. IPv4 may soon be replaced with IP version 6 (IPv6) as the dominant protocol of the Internet. IPv6 has virtually unlimited address space and implementation has begun in some networks. Over the past two decades, engineers have successfully modified IPv4 so that it can survive the exponential growth of the Internet. VLSM is one of the modifications that has helped to bridge the gap between IPv4 and IPv6.

Networks must be scalable since the needs of users evolve. When a network is scalable it is able to grow in a logical, efficient, and cost-effective way. The routing protocol used in a network helps determine the scalability of the network. It is important to choose the routing protocol wisely. Routing Information Protocol version 1 (RIP v1) is suitable for small networks. However, it is not scalable to large networks. RIP version 2 (RIP v2) was developed to overcome these limitations.

This module covers some of the objectives for the CCNA 640-801 and ICND 640-811 exams.  

Students who complete this module should be able to perform the following tasks:

  • Define VLSM and briefly describe the reasons for its use
  • Divide a major network into subnets of different sizes using VLSM
  • Define route aggregation and summarization as they relate to VLSM
  • Configure a router using VLSM
  • Identify the key features of RIP v1 and RIP v2
  • Identify the important differences between RIP v1 and RIP v2
  • Configure RIP v2
  • Verify and troubleshoot RIP v2 operation

Configure default routes using the ip route and ip default-network commands 


Comments

Popular posts from this blog

OSI layers / Peer-to-peer communications / TCP/IP model

OSI layers 2.3.4 This page discusses the seven layers of the OSI model. The OSI reference model is a framework that is used to understand how information travels throughout a network. The OSI reference model explains how packets travel through the various layers to another device on a network, even if the sender and destination have different types of network media. In the OSI reference model, there are seven numbered layers, each of which illustrates a particular network function. - Dividing the network into seven layers provides the following advantages: • It breaks network communication into smaller, more manageable parts. • It standardizes network components to allow multiple vendor development and support. • It allows different types of network hardware and software to communicate with each other. • It prevents changes in one layer from affecting other layers. • It divides network communication into smaller parts to make learning it easier to understand. In the foll...

Advantages and disadvantages of link-state routing

Advantages and disadvantages of link-state routing 2.1.5  This page lists the advantages and disadvantages of link-state routing protocols. The following are advantages of link-state routing protocols:  Link-state protocols use cost metrics to choose paths through the network. The cost metric reflects the capacity of the links on those paths. Link-state protocols use triggered updates and LSA floods to immediately report changes in the network topology to all routers in the network. This leads to fast convergence times. Each router has a complete and synchronized picture of the network. Therefore, it is very difficult for routing loops to occur. Routers use the latest information to make the best routing decisions. The link-state database sizes can be minimized with careful network design. This leads to smaller Dijkstra calculations and faster convergence. Every router, at the very least, maps the topology of it...

Ports for services

Ports for services 10.2.2  Services running on hosts must have a port number assigned to them so communication can occur. A remote host attempting to connect to a service expects that service to use specific transport layer protocols and ports. Some ports, which are defined in RFC 1700, are known as the well-known ports. These ports are reserved in both TCP and UDP.  These well-known ports define applications that run above the transport layer protocols. For example, a server that runs FTP will use ports 20 and 21 to forward TCP connections from clients to its FTP application. This allows the server to determine which service a client requests. TCP and UDP use port numbers to determine the correct service to which requests are forwarded. The next page will discuss ports in greater detail.