Skip to main content

1.2.8 DHCP Relay

1.2.8 DHCP Relay


















DHCP clients use IP broadcasts to find the DHCP server on the segment. What happens when the server and the client are not on the same segment and are separated by a router? Routers do not forward these broadcasts.
DHCP is not the only critical service that uses broadcasts. Cisco routers and other devices may use broadcasts to locate TFTP servers. Some clients may need to broadcast to locate a TACACS server. A TACACS server is a security server. Typically, in a complex hierarchical network, clients do not reside on the same subnet as key servers. Such remote clients will broadcast to locate these servers. However, routers, by default, will not forward client broadcasts beyond their subnet.
Because some clients are useless without services such as DHCP, one of two choices must be implemented. The administrator will need to place servers on all subnets or use the Cisco IOS helper address feature. Running services such as DHCP or DNS on several computers creates overhead and administrative difficulties making the first option inefficient. When possible, administrators should use the ip helper-address command to relay broadcast requests for these key UDP services.
By using the helper address feature, a router can be configured to accept a broadcast request for a UDP service and then forward it as a unicast to a specific IP address. By default, the ip helper-address command forwards the following eight UDP services:
  • Time
  • TACACS
  • DNS
  • BOOTP/DHCP Server
  • BOOTP/DHCP Client
  • TFTP
  • NetBIOS Name Service
  • NetBIOS datagram Service
In the particular case of DHCP, a client broadcasts a DHCPDISCOVER packet on its local segment. This packet is picked up by the gateway. If a helper-address is configured, the DHCP packet is forwarded to the specified address. Before forwarding the packet, the router fills in the GIADDR field of the packet with the IP address of the router for that segment. This address will then be the gateway address for the DHCP client, when it gets the IP address. 
The DHCP server receives the discover packet. The server uses the GIADDR field to index into the list of address pools in order to find one which has the gateway address set to the value in GIADDR. This pool is then used to supply the client with its IP address.

Comments

Popular posts from this blog

OSI layers / Peer-to-peer communications / TCP/IP model

OSI layers 2.3.4 This page discusses the seven layers of the OSI model. The OSI reference model is a framework that is used to understand how information travels throughout a network. The OSI reference model explains how packets travel through the various layers to another device on a network, even if the sender and destination have different types of network media. In the OSI reference model, there are seven numbered layers, each of which illustrates a particular network function. - Dividing the network into seven layers provides the following advantages: • It breaks network communication into smaller, more manageable parts. • It standardizes network components to allow multiple vendor development and support. • It allows different types of network hardware and software to communicate with each other. • It prevents changes in one layer from affecting other layers. • It divides network communication into smaller parts to make learning it easier to understand. In the foll...

Advantages and disadvantages of link-state routing

Advantages and disadvantages of link-state routing 2.1.5  This page lists the advantages and disadvantages of link-state routing protocols. The following are advantages of link-state routing protocols:  Link-state protocols use cost metrics to choose paths through the network. The cost metric reflects the capacity of the links on those paths. Link-state protocols use triggered updates and LSA floods to immediately report changes in the network topology to all routers in the network. This leads to fast convergence times. Each router has a complete and synchronized picture of the network. Therefore, it is very difficult for routing loops to occur. Routers use the latest information to make the best routing decisions. The link-state database sizes can be minimized with careful network design. This leads to smaller Dijkstra calculations and faster convergence. Every router, at the very least, maps the topology of it...

Ports for services

Ports for services 10.2.2  Services running on hosts must have a port number assigned to them so communication can occur. A remote host attempting to connect to a service expects that service to use specific transport layer protocols and ports. Some ports, which are defined in RFC 1700, are known as the well-known ports. These ports are reserved in both TCP and UDP.  These well-known ports define applications that run above the transport layer protocols. For example, a server that runs FTP will use ports 20 and 21 to forward TCP connections from clients to its FTP application. This allows the server to determine which service a client requests. TCP and UDP use port numbers to determine the correct service to which requests are forwarded. The next page will discuss ports in greater detail.