Skip to main content

Introduction to Ethernet/802.3 LANs / Ethernet/802.3 LAN development

Introduction to Ethernet/802.3 LANs
4.1.1 Ethernet/802.3 LAN development

This page will review the devices that are found on a network.
The earliest LAN technologies used either thick Ethernet or thin Ethernet infrastructures. It is important to understand the limitations of these infrastructures, as shown in Figure, in order to understand the advancements in LAN switching.
The addition of hubs or concentrates into the network offered an improvement on thick and thin Ethernet technology. A hub is a Layer 1 device and is sometimes referred to as an Ethernet concentrate or a multi-port repeater. Hubs allow better access to the network for more users. Hubs regenerate data signals which allows networks to be extended to greater distances. Hubs do not make any decisions when data signals are received. Hubs simply regenerate and amplify the data signals to all connected devices, except for the device that originally sent the signal.
Ethernet is fundamentally a shared technology where all users on a given LAN segment compete for the same available bandwidth. This situation is analogous to a number of cars that try to access a one-lane road at the same time. Since the road has only one lane, only one car can access it at a time. As hubs were added to the network, more users competed for the same bandwidth.
Collisions are a by-product of Ethernet networks. If two or more devices try to transmit at the same time, a collision occurs. This situation is analogous to two cars that try to merge into a single lane and cause a collision. Traffic is backed up until the collision can be cleared. Excessive collisions in a network result in slow network response times. This indicates that the network is too congested or has too many users who need to access the network at the same time.
Layer 2 devices are more intelligent than Layer 1 devices. Layer 2 devices make forwarding decisions based on Media Access Control (MAC) addresses contained within the headers of transmitted data frames.
A bridge is a Layer 2 device used to divide, or segment, a network. Bridges collect and selectively pass data frames between two network segments. In order to do this, bridges learn the MAC address of devices on each connected segment. With this information, the bridge builds a bridging table and forwards or blocks traffic based on that table. This results in smaller collision domains and greater network efficiency. Bridges do not restrict broadcast traffic. However, they do provide greater traffic control within a network.
A switch is also a Layer 2 device and may be referred to as a multi-port bridge. Switches make forwarding decisions based on MAC addresses contained within transmitted data frames. Switches learn the MAC addresses of devices connected to each port and this information is entered into a switching table.
Switches create a virtual circuit between two connected devices that want to communicate. When the virtual circuit is created, a dedicated communication path is established between the two devices. The implementation of a switch on the network provides micro segmentation. This creates a collision free environment between the source and destination, which allows maximum utilization of the available bandwidth. Switches are able to facilitate multiple, simultaneous virtual circuit connections. This is analogous to a highway that is divided into multiple lanes and each car has its own dedicated lane.
The disadvantage of Layer 2 devices is that they forward broadcast frames to all connected devices on the network. Excessive broadcasts in a network result in slow network response times.
A router is a Layer 3 device. Routers make decisions based on groups of network addresses, or classes, as opposed to individual MAC addresses. Routers use routing tables to record the Layer 3 addresses of the networks that are directly connected to the local interfaces and network paths learned from neighbor routers.
The following are functions of a router:
  • Examine inbound packets of Layer 3 data
  • Choose the best path for the data through the network
  • Route the data to the proper outbound port
Routers do not forward broadcasts unless they are programmed to do so. Therefore, routers reduce the size of both the collision domains and the broadcast domains in a network. Routers are the most important devices to regulate traffic on large networks. Routers enable communication between two computers regardless of location or operating system.
LANs typically employ a combination of Layer 1, Layer 2, and Layer 3 devices. Implementation of these devices depends on factors that are specific to the particular needs of the organization.  
The Interactive Media Activity will require students to match network devices to the layers of the OSI model.
The next page will discuss network congestion.

Comments

Popular posts from this blog

OSI layers / Peer-to-peer communications / TCP/IP model

OSI layers 2.3.4 This page discusses the seven layers of the OSI model. The OSI reference model is a framework that is used to understand how information travels throughout a network. The OSI reference model explains how packets travel through the various layers to another device on a network, even if the sender and destination have different types of network media. In the OSI reference model, there are seven numbered layers, each of which illustrates a particular network function. - Dividing the network into seven layers provides the following advantages: • It breaks network communication into smaller, more manageable parts. • It standardizes network components to allow multiple vendor development and support. • It allows different types of network hardware and software to communicate with each other. • It prevents changes in one layer from affecting other layers. • It divides network communication into smaller parts to make learning it easier to understand. In the foll...

Advantages and disadvantages of link-state routing

Advantages and disadvantages of link-state routing 2.1.5  This page lists the advantages and disadvantages of link-state routing protocols. The following are advantages of link-state routing protocols:  Link-state protocols use cost metrics to choose paths through the network. The cost metric reflects the capacity of the links on those paths. Link-state protocols use triggered updates and LSA floods to immediately report changes in the network topology to all routers in the network. This leads to fast convergence times. Each router has a complete and synchronized picture of the network. Therefore, it is very difficult for routing loops to occur. Routers use the latest information to make the best routing decisions. The link-state database sizes can be minimized with careful network design. This leads to smaller Dijkstra calculations and faster convergence. Every router, at the very least, maps the topology of it...

Ports for services

Ports for services 10.2.2  Services running on hosts must have a port number assigned to them so communication can occur. A remote host attempting to connect to a service expects that service to use specific transport layer protocols and ports. Some ports, which are defined in RFC 1700, are known as the well-known ports. These ports are reserved in both TCP and UDP.  These well-known ports define applications that run above the transport layer protocols. For example, a server that runs FTP will use ports 20 and 21 to forward TCP connections from clients to its FTP application. This allows the server to determine which service a client requests. TCP and UDP use port numbers to determine the correct service to which requests are forwarded. The next page will discuss ports in greater detail.