Skip to main content

Posts

Showing posts from February, 2010

History and future of TCP/IP / Application layer

History and future of TCP/IP 9.1.1 This page discusses the history and the future of TCP/IP. The U.S. Department of Defense (DoD) created the TCP/IP reference model because it wanted a network that could survive any conditions. To illustrate further, imagine a world, crossed by multiple cable runs, wires, microwaves, optical fibers, and satellite links. Then imagine a need for data to be transmitted without regard for the condition of any particular node or network. The U.S. DoD required reliable data transmission to any destination on the network under any circumstances. The creation of the TCP/IP model helped to solve this difficult design problem. The TCP/IP model has since become the standard on which the Internet is based. Think about the layers of the TCP/IP model layers in relation to the original intent of the Internet. This will help reduce confusion. The four layers of the TCP/IP model are the application layer, transport layer, Internet layer, and network access layer...

Module 9: TCP/IP Protocol Suite and IP Addressing Overview

Overview The Internet was developed to provide a communication network that could function in wartime. Although the Internet has evolved from the original plan, it is still based on the TCP/IP protocol suite. The design of TCP/IP is ideal for the decentralized and robust Internet. Many common protocols were designed based on the four-layer TCP/IP model. It is useful to know both the TCP/IP and OSI network models. Each model uses its own structure to explain how a network works. However, there is much overlap between the two models. A system administrator should be familiar with both models to understand how a network functions. Any device on the Internet that wants to communicate with other Internet devices must have a unique identifier. The identifier is known as the IP address because routers use a Layer 3 protocol called the IP protocol to find the best route to that device. The current version of IP is IPv4. This was designed before there was a large demand for addresses. Exp...

Summary of Module 8

Summary This page summarizes the topics discussed in this module. Ethernet is a shared media, baseband technology, which means only one node can transmit data at a time. Increasing the number of nodes on a single segment increases demand on the available bandwidth. This in turn increases the probability of collisions. A solution to the problem is to break a large network segment into parts and separate it into isolated collision domains. Bridges and switches are used to segment the network into multiple collision domains. A bridge builds a bridge table from the source addresses of packets it processes. An address is associated with the port the frame came in on. Eventually the bridge table contains enough address information to allow the bridge to forward a frame out a particular port based on the destination address. This is how the bridge controls traffic between two collision domains. Switches learn in much the same way as bridges but provide a virtual connection directly be...

What is a network segment?

What is a network segment? 8.2.7 This page explains what a network segment is. As with many terms and acronyms, segment has multiple meanings. The dictionary definition of the term is as follows: • A separate piece of something • One of the parts into which an entity, or quantity is divided or marked off by or as if by natural boundaries In the context of data communication, the following definitions are used: • Section of a network that is bounded by bridges, routers, or switches. • In a LAN using a bus topology, a segment is a continuous electrical circuit that is often connected to other such segments with repeaters. • Term used in the TCP specification to describe a single transport layer unit of information. The terms datagram, frame, message, and packet are also used to describe logical information groupings at various layers of the OSI reference model and in various technology circles. To properly define the term segment, the context of the usage must be presented...

Broadcast domains / Introduction to data flow

Broadcast domains 8.2.5 This page will explain the features of a broadcast domain. A broadcast domain is a group of collision domains that are connected by Layer 2 devices. When a LAN is broken up into multiple collision domains, each host in the network has more opportunities to gain access to the media. This reduces the chance of collisions and increases available bandwidth for every host. Broadcasts are forwarded by Layer 2 devices. Excessive broadcasts can reduce the efficiency of the entire LAN. Broadcasts have to be controlled at Layer 3 since Layers 1 and 2 devices cannot control them. A broadcast domain includes all of the collision domains that process the same broadcast frame. This includes all the nodes that are part of the network segment bounded by a Layer 3 device. Broadcast domains are controlled at Layer 3 because routers do not forward broadcasts. Routers actually work at Layers 1, 2, and 3. Like all Layer 1 devices, routers have a physical connection and transmit ...

Layer 2 broadcasts

Layer 2 broadcasts 8.2.4 This page will explain how Layer 2 broadcasts are used. To communicate with all collision domains, protocols use broadcast and multicast frames at Layer 2 of the OSI model. When a node needs to communicate with all hosts on the network, it sends a broadcast frame with a destination MAC address 0xFFFFFFFFFFFF. This is an address to which the NIC of every host must respond. Layer 2 devices must flood all broadcast and multicast traffic. The accumulation of broadcast and multicast traffic from each device in the network is referred to as broadcast radiation. In some cases, the circulation of broadcast radiation can saturate the network so that there is no bandwidth left for application data. In this case, new network connections cannot be made and established connections may be dropped. This situation is called a broadcast storm. The probability of broadcast storms increases as the switched network grows. A NIC must rely on the CPU to process each broadca...

Collision domains / Segmentation

Collision domains 8.2.2 This page will define collision domains. Collision domains are the connected physical network segments where collisions can occur. Collisions cause the network to be inefficient. Every time a collision happens on a network, all transmission stops for a period of time. The length of this period of time varies and is determined by a backoff algorithm for each network device. The types of devices that interconnect the media segments define collision domains. These devices have been classified as OSI Layer 1, 2 or 3 devices. Layer 2 and Layer 3 devices break up collision domains. This process is also known as segmentation. Layer 1 devices such as repeaters and hubs are mainly used to extend the Ethernet cable segments. This allows more hosts to be added. However, every host that is added increases the amount of potential traffic on the network. Layer 1 devices forward all data that is sent on the media. As more traffic is transmitted within a collision domai...

Spanning-Tree Protocol / Shared media environments

Spanning-Tree Protocol 8.1.6 This page will introduce STP. When multiple switches are arranged in a simple hierarchical tree, switching loops are unlikely to occur. However, switched networks are often designed with redundant paths to provide for reliability and fault tolerance. Redundant paths are desirable but they can have undesirable side effects such as switching loops. Switching loops are one such side effect. Switching loops can occur by design or by accident, and they can lead to broadcast storms that will rapidly overwhelm a network. STP is a standards-based routing protocol that is used to avoid routing loops. Each switch in a LAN that uses STP sends messages called Bridge Protocol Data Units (BPDUs) out all its ports to let other switches know of its existence. This information is used to elect a root bridge for the network. The switches use the spanning-tree algorithm (STA) to resolve and shut down the redundant paths. Each port on a switch that uses STP exists in one...

Switch operation / Latency / Switch modes

Switch operation 8.1.3 This page describes the operation of a switch. A switch is simply a bridge with many ports. When only one node is connected to a switch port, the collision domain on the shared media contains only two nodes. The two nodes in this small segment, or collision domain, consist of the switch port and the host connected to it. These small physical segments are called microsegments. Another capability emerges when only two nodes are connected. In a network that uses twisted-pair cabling, one pair is used to carry the transmitted signal from one node to the other node. A separate pair is used for the return or received signal. It is possible for signals to pass through both pairs simultaneously. The ability to communicate in both directions at once is known as full duplex. Most switches are capable of supporting full duplex, as are most NICs. In full duplex mode, there is no contention for the media. A collision domain no longer exists. In theory, the bandwidth is d...

Layer 2 bridging / Layer 2 switching

Layer 2 bridging   8.1.1 This page will discuss the operation of Layer 2 bridges. As more nodes are added to an Ethernet segment, use of the media increases. Ethernet is a shared media, which means only one node can transmit data at a time. The addition of more nodes increases the demands on the available bandwidth and places additional loads on the media. This also increases the probability of collisions, which results in more retransmissions. A solution to the problem is to break the large segment into parts and separate it into isolated collision domains. To accomplish this a bridge keeps a table of MAC addresses and the associated ports. The bridge then forwards or discards frames based on the table entries. The following steps illustrate the operation of a bridge: • The bridge has just been started so the bridge table is empty. The bridge just waits for traffic on the segment. When traffic is detected, it is processed by the bridge. • Host A pings Host B. Since the data...

Module 8: Ethernet Switching Overview

Ethernet Switching Overview Shared Ethernet works extremely well under ideal conditions. If the number of devices that try to access the network is low, the number of collisions stays well within acceptable limits. However, when the number of users on the network increases, the number of collisions can significantly reduce performance. Bridges were developed to help correct performance problems that arose from increased collisions. Switches evolved from bridges to become the main technology in modern Ethernet LANs. Collisions and broadcasts are expected events in modern networks. They are engineered into the design of Ethernet and higher layer technologies. However, when collisions and broadcasts occur in numbers that are above the optimum, network performance suffers. Collision domains and broadcast domains should be designed to limit the negative effects of collisions and broadcasts. This module explores the effects of collisions and broadcasts on network traffic and then describ...

Summary of Module 7

Summary This page summarizes the topics discussed in this module. Ethernet is a technology that has increased in speed one thousand times, from 10 Mbps to 10,000 Mbps, in less than a decade. All forms of Ethernet share a similar frame structure and this leads to excellent interoperability. Most Ethernet copper connections are now switched full duplex, and the fastest copper-based Ethernet is 1000BASE-T, or Gigabit Ethernet. 10 Gigabit Ethernet and faster are exclusively optical fiber-based technologies. 10BASE5, 10BASE2, and 10BASE-T Ethernet are considered Legacy Ethernet. The four common features of Legacy Ethernet are timing parameters, frame format, transmission process, and a basic design rule. Legacy Ethernet encodes data on an electrical signal. The form of encoding used in 10 Mbps systems is called Manchester encoding. Manchester encoding uses a change in voltage to represent the binary numbers zero and one. An increase or decrease in voltage during a timed period, call...

10-Gigabit Ethernet architectures / Future of Ethernet

10-Gigabit Ethernet architectures 7.2.6 This page describes the 10-Gigabit Ethernet architectures. As with the development of Gigabit Ethernet, the increase in speed comes with extra requirements. The shorter bit time duration because of increased speed requires special considerations. For 10 GbE transmissions, each data bit duration is 0.1 nanosecond. This means there would be 1,000 GbE data bits in the same bit time as one data bit in a 10-Mbps Ethernet data stream. Because of the short duration of the 10 GbE data bit, it is often difficult to separate a data bit from noise. 10 GbE data transmissions rely on exact bit timing to separate the data from the effects of noise on the physical layer. This is the purpose of synchronization. In response to these issues of synchronization, bandwidth, and Signal-to-Noise Ratio, 10-Gigabit Ethernet uses two separate encoding steps. By using codes to represent the user data, transmission is made more efficient. The encoded data provides syn...

Gigabit Ethernet architecture / 10-Gigabit Ethernet

Gigabit Ethernet architecture 7.2.4 This page will discuss the architecture of Gigabit Ethernet. The distance limitations of full-duplex links are only limited by the medium, and not the round-trip delay. Since most Gigabit Ethernet is switched, the values in Figures and are the practical limits between devices. Daisy-chaining, star, and extended star topologies are all allowed. The issue then becomes one of logical topology and data flow, not timing or distance limitations. A 1000BASE-T UTP cable is the same as 10BASE-T and 100BASE-TX cable, except that link performance must meet the higher quality Category 5e or ISO Class D (2000) requirements. Modification of the architecture rules is strongly discouraged for 1000BASE-T. At 100 meters, 1000BASE-T is operating close to the edge of the ability of the hardware to recover the transmitted signal. Any cabling problems or environmental noise could render an otherwise compliant cable inoperable even at distances that are within the...

1000BASE-T / 1000BASE-SX and LX

1000BASE-T 7.2.2 This page will describe 1000BASE-T. As Fast Ethernet was installed to increase bandwidth to workstations, this began to create bottlenecks upstream in the network. The 1000BASE-T standard, which is IEEE 802.3ab, was developed to provide additional bandwidth to help alleviate these bottlenecks. It provided more throughput for devices such as intra-building backbones, inter-switch links, server farms, and other wiring closet applications as well as connections for high-end workstations. Fast Ethernet was designed to function over Category 5 copper cable that passes the Category 5e test. Most installed Category 5 cable can pass the Category 5e certification if properly terminated. It is important for the 1000BASE-T standard to be interoperable with 10BASE-T and 100BASE-TX. Since Category 5e cable can reliably carry up to 125 Mbps of traffic, 1000 Mbps or 1 Gigabit of bandwidth was a design challenge. The first step to accomplish 1000BASE-T is to use all four pairs ...

Fast Ethernet architecture / 1000-Mbps Ethernet

Fast Ethernet architecture 7.1.9 This page describes the architecture of Fast Ethernet. Fast Ethernet links generally consist of a connection between a station and a hub or switch. Hubs are considered multi-port repeaters and switches are considered multi-port bridges. These are subject to the 100-m (328 ft) UTP media distance limitation. A Class I repeater may introduce up to 140 bit-times latency. Any repeater that changes between one Ethernet implementation and another is a Class I repeater. A Class II repeater is restricted to smaller timing delays, 92 bit times, because it immediately repeats the incoming signal to all other ports without a translation process. To achieve a smaller timing delay, Class II repeaters can only connect to segment types that use the same signaling technique. As with 10-Mbps versions, it is possible to modify some of the architecture rules for 100-Mbps versions. Modification of the architecture rules is strongly discouraged for 100BASE-TX. 100BA...

100BASE-TX / 100BASE-FX

100BASE-TX 7.1.7 This page will describe 100BASE-TX. In 1995, 100BASE-TX was the standard, using Category 5 UTP cable, which became commercially successful. The original coaxial Ethernet used half-duplex transmission so only one device could transmit at a time. In 1997, Ethernet was expanded to include a full-duplex capability that allowed more than one PC on a network to transmit at the same time. Switches replaced hubs in many networks. These switches had full-duplex capabilities and could handle Ethernet frames quickly. 100BASE-TX uses 4B/5B encoding, which is then scrambled and converted to Multi-Level Transmit (MLT-3) encoding. Figure shows four waveform examples. The top waveform has no transition in the center of the timing window. No transition indicates a binary zero. The second waveform shows a transition in the center of the timing window. A transition represents a binary one. The third waveform shows an alternating binary sequence. The fourth wavelength shows that s...

10BASE-T wiring and architecture / 100-Mbps Ethernet

10BASE-T wiring and architecture 7.1.5 This page explains the wiring and architecture of 10BASE-T. A 10BASE-T link generally connects a station to a hub or switch. Hubs are multi-port repeaters and count toward the limit on repeaters between distant stations. Hubs do not divide network segments into separate collision domains. Bridges and switches divide segments into separate collision domains. The maximum distance between bridges and switches is based on media limitations. Although hubs may be linked, it is best to avoid this arrangement. A network with linked hubs may exceed the limit for maximum delay between stations. Multiple hubs should be arranged in hierarchical order like a tree structure. Performance is better if fewer repeaters are used between stations. An architectural example is shown in Figure . The distance from one end of the network to the other places the architecture at its limit. The most important aspect to consider is how to keep the delay between dista...

10BASE2

10BASE2 7.1.3 This page covers 10BASE2, which was introduced in 1985. Installation was easier because of its smaller size, lighter weight, and greater flexibility. 10BASE2 still exists in legacy networks. Like 10BASE5, it is no longer recommended for network installations. It has a low cost and does not require hubs. 10BASE2 also uses Manchester encoding. Computers on a 10BASE2 LAN are linked together by an unbroken series of coaxial cable lengths. These lengths are attached to a T-shaped connector on the NIC with BNC connectors. 10BASE2 has a stranded central conductor. Each of the maximum five segments of thin coaxial cable may be up to 185 m (607 ft) long and each station is connected directly to the BNC T-shaped connector on the coaxial cable. Only one station can transmit at a time or a collision will occur. 10BASE2 also uses half-duplex. The maximum transmission rate of 10BASE2 is 10 Mbps. There may be up to 30 stations on a 10BASE2 segment. Only three out of five con...